期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Modeling and optimization of aluminum-steel refill friction stir spot welding based on backpropagation neural network
1
作者 Shi-yi Wang Yun-qiang Zhao +3 位作者 Korzhyk Volodymyr Hao-kun Yang Li-kun Li Bei-xian Zhang 《Journal of Iron and Steel Research International》 2025年第7期2104-2115,共12页
Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process... Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process was first established with 6061-T6 aluminum alloy and DP780 galvanized steel as base materials.This dataset was then optimized using a backpropagation neural network.Analyses and mining of the experimental data confirmed the multidimensional mapping relationship between welding parameters and joint strength.Subsequently,intelligent optimization of the welding process and prediction of joint strength were achieved.At the predicted welding parameter(plunging rotation speedω1=1733 r/min,refilling rotation speedω_(2)=1266 r/min,plunging depth p=1.9 mm,and welding speed v=0.5 mm/s),the tensile shear fracture load of the joint reached a maximum value of 10,172 N,while the experimental result was 9980 N,with an error of 1.92%.Furthermore,the correlation of welding parameters-microstructure-joint strength was established. 展开更多
关键词 Refill friction stir spot welding-neural network Welding parameter optimization MICROSTRUCTURE Joint strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部