To satisfy the demand for good quality underwater welding and maintenance of nuclear power stations,a set of local dry automatic welding systems has been developed.These systems were based on an underwater robot that ...To satisfy the demand for good quality underwater welding and maintenance of nuclear power stations,a set of local dry automatic welding systems has been developed.These systems were based on an underwater robot that consisted of a special high-power underwater welding power supply,diving wire feeder,mini drain cap,welding robot,and special underwater welding torch.With a digital signal controller microprocessor as its core and combined with a dual inverter topology,the welding power supply was characterized by full-digital construction and multi-waveform flexible output.A compact diving wire feeding device was designed,based on the armature voltage negative feedback and high-frequency chopping pulse width modulation.This device yielded a high-efficiency seal of the driving motor with the help of dynamic and static sealing technology.To overcome the difficulty of local protection and deslagging in the welding area,a mini drain cap(with a duplexgas structure)based on the principle of the convergent nozzle was designed.The practical tests and the underwater welding experiments revealed that the underwater robotic local dry welding system is quite feasible.That is,the system could strike the arc stably and reliably in the shallow water environment,and formed beautiful welding seams.展开更多
Teleoperation control strategies for collaborative welding system which is targeting at giving full play to human’s superiority is designed and the fitness for teleoperation welding task of which are studied. During ...Teleoperation control strategies for collaborative welding system which is targeting at giving full play to human’s superiority is designed and the fitness for teleoperation welding task of which are studied. During the teleoperation welding process, 6-DOF controller’s signal can be converted into welding torch’s position, velocity or acceleration changing which is being controlled. For welding purposes, control strategies of four modes are designed, which are static position and posture mode, dynamic position and posture mode, velocity mode and acceleration mode. A test and analysis system for testing the tracking accuracy and reliability of control strategy based on virtual reality is developed. The tracking accuracies of the four control strategies are studied in the following tests with straight line trajectory, curve trajectory or space curve trajectory. The results show that the control strategy in dynamic position and posture mode has best stability and strong adaptability which is the most suitable for the teleoperation system.展开更多
According to the requirements of welding process for vortex type compressor of air conditioner manufactured in product line, a special girth welding machine with PLC as control core was developed, which had both uprig...According to the requirements of welding process for vortex type compressor of air conditioner manufactured in product line, a special girth welding machine with PLC as control core was developed, which had both upright and 45 ° incline service positions. And some key technologies were researched, such as structural design of machine body, reliable conduction of rotary weldments and quality control of welding process and so on. The experimental results showed that this machine could satisfy the requirements of welding quality and girth welding technology, results also proved the machine was a high-effwiency and low-cost automatic welding device.展开更多
The robust control law for gas tungsten arc welding dynamic process, which is a typical sampled-data system and full of uncertainties, is presented. By using the Lyapunov, second method, the robust control and robust ...The robust control law for gas tungsten arc welding dynamic process, which is a typical sampled-data system and full of uncertainties, is presented. By using the Lyapunov, second method, the robust control and robust optimal control for a class of sampled-data systems whose underlying continuous-time systems are subjected to structured uncertainties are discussed in time-domain. As a result, some sufficient conditions of robust stability and the corresponding robust control laws are derived. All these results are designed by solving a class of linear matrix inequalities (LMIs) and a class of dynamic optimization problem with LMIs constraints respectively. An example adapted under some experimental conditions in the dynamic process of gas tungsten arc welding system in which the controlled variable is the backside width of weld pool and controlling variable pulse duty ratio, is worked out to illustrate the proposed results, it is shown that the sampling period is the crucial design oarameter.展开更多
In this paper a modifed continuous energy law was explored to investigate transport behavior in a gas metal arc welding(GMAW)system.The energy law equality at a discrete level for the GMAW system was derived by using ...In this paper a modifed continuous energy law was explored to investigate transport behavior in a gas metal arc welding(GMAW)system.The energy law equality at a discrete level for the GMAW system was derived by using the finite element scheme.The mass conservation and current density continuous equation with the penalty scheme was applied 10 improve the stability.According to the phase-field model coupled with the energy law preserving method,the GMAW model was discretized and a metal transfer process with a pulse current was simulated.It was found that the numerical solution agrees well with the data of the metal transfer process obtained by high-speed photography.Compared with the numerical solution of the volume of fuid model,which was widely studied in the GMAW system based on the finite element method Euler scheme,the energy law preserving method can provide better accuracy in predicting the shape evolution of the droplet and with a greater computing efficiency.展开更多
To develop a control system of cantilever arm for barrels welding, a motion controller has been developed to fit the welding procedure. The main research fields of the controller are: (1) finding effective measures to...To develop a control system of cantilever arm for barrels welding, a motion controller has been developed to fit the welding procedure. The main research fields of the controller are: (1) finding effective measures to protect the controller against interferences; (2) decreasing welding current gradually in order to alleviate arc craters which are harmful to seam forming and welding quality; (3) planning the arm velocity to minimize the influence of the arm swing on arc length regulator; (4) adopting adaptive control algorithm with PD feedback and velocity feed-forward to reduce the influence of system inertia and velocity planning on the system transient performance.展开更多
Welding seam tracking precision was decreased due to human hand tremor during the master-slave welding teleoperation. To solve this problem, a master-slave robot remote welding system was built, the system consisted o...Welding seam tracking precision was decreased due to human hand tremor during the master-slave welding teleoperation. To solve this problem, a master-slave robot remote welding system was built, the system consisted of a master manipulator with six degree of freedom ( DOF ) , an industrial computer control system and a slave Motoman HP3 J robot, and human hand tremor and digital filtering were discussed. An optimal digital filter was designed to clean human tremor signal for improving the welding seam tracking precision. The experimental results show that the digital filter suppresses the operator' s tremor signal.展开更多
This paper presents an integrated simulation model for full digital controlled PMIG/MAG welding system with Matlab/Simulink, and it consists of power inverter, digital control system and dynamic arc-load model. An int...This paper presents an integrated simulation model for full digital controlled PMIG/MAG welding system with Matlab/Simulink, and it consists of power inverter, digital control system and dynamic arc-load model. An integrated simulation study was done for full digital PMIG/MAG welding, and a method of connecting dynamic arc-load model to the system with controlled current source was presented, in addition, the simulation results were utilized to study the issues of digital control PMIG/MAG welding in this paper. The experimental results validated the developed simulation model, and this simulation study can be applied in implementation of the full digital PMIG/MAG welding and analysis of system dynamic process.展开更多
Based on the pulsed plasma arc welding(PPAW),a rapid remanufacturing shaping system,including a structured light scanning reverse engineering(RE)system,a robot system and a PPAW source system have been developed.The n...Based on the pulsed plasma arc welding(PPAW),a rapid remanufacturing shaping system,including a structured light scanning reverse engineering(RE)system,a robot system and a PPAW source system have been developed.The new rapid remanufacturing shaping system can rapidly and accurately repair the worn parts with different damaged degrees and thus extend their life cycle.In the present paper,the whole process of repairing worn parts is described.Firstly,the scanning model of a worn part is obtained by using RE system based on reconstructing approach.Compared with standard CAD model in the undamaged setting,the surface profile and the extent of damage area are obtained.Secondly,the weld repair path is designed by slicing the point cloud model of damage area.This path consists of multilayer parallel lines that produce parallel overlapped weld beads which cover the damaged area.By off-line programming techniques,the robot executable program as document format is transmitted to the robot controller for repairing worn parts.Finally,the weld repair experiments on worn steel plane plate and damaged column are performed to evaluate the remanufacturing system.展开更多
In this paper, neural network control systems for decreasing the spatter of CO2 welding have been created. The Generalized inverse Learning Architecture(GILA), the SPecialized inverse Learning Architecture(SILA)-I &a...In this paper, neural network control systems for decreasing the spatter of CO2 welding have been created. The Generalized inverse Learning Architecture(GILA), the SPecialized inverse Learning Architecture(SILA)-I & H and the Error Back Propagating Model(EBPM) are adopted respectively to simulate the static and dynamic welding control processes. The results of simulation and experiment show that the SILA-I and EBPM have betted properties. The factors affecting the simulating results and the dynamic response quality have also been analyzed.展开更多
The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, ...The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.展开更多
Because of relatively large protective area and good underwater welding quality, chamber underwater welding has a great using prospect in spent fuel pool maintenance at nuclear power plant. A chamber local dry automat...Because of relatively large protective area and good underwater welding quality, chamber underwater welding has a great using prospect in spent fuel pool maintenance at nuclear power plant. A chamber local dry automatic underwater welding test system with a data acquisition platform is developed, drainage seal tests in a water tank are carried out and the data acquired from the tests are analyzed. The results show that the chamber local dry underwater welding test system can achieve good drainage seal, the drainage effect is enhanced with the increase of the drainage gas flow rate and the drainage time. The results establish the foundation of the research of chamber local dry underwater welding.展开更多
A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasin...A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.展开更多
Aluminum welding using a hybrid system with a laser and scanner welding head was performed under various welding conditions to verify the feasibility of applying an aluminum alloy to a car body.The experimental materi...Aluminum welding using a hybrid system with a laser and scanner welding head was performed under various welding conditions to verify the feasibility of applying an aluminum alloy to a car body.The experimental material was 5J32 aluminum alloy,and the laser power,welding speed,and laser incidence angle were used as the control variables.The weld bead shape and the tensile shear strength were evaluated in order to understand the aluminum lap joint weld characteristics.Analysis of variance (ANOVA) was conducted to identify the effect of the process variables on the tensile shear strength.Tensile strength estimation models using three different regression models were also suggested.The input variables were the laser power,welding speed,and laser incidence angle,and the output was the tensile shear strength.Among the models,the second-order polynomial estimation model had the best estimation performance,and the average error rate of this model was 0.058.展开更多
Compared to traditional welding methods, the underwater wet welding is special with many different characteristics due to the unique aqueous environment. It is conducted completely under water by divers and unique wel...Compared to traditional welding methods, the underwater wet welding is special with many different characteristics due to the unique aqueous environment. It is conducted completely under water by divers and unique welding technology is required in the special operation environment. The operating levels of the divers are the key factor to acquire high quality welded joints. In this paper, an underwater wet welding experimental and divers training system is developed to serve divers training and conducting welding experiments. The system consists of life support system, signals real-time monitoring system and communicating system, etc. An underwater butt welding experiment based on welding electrodes is conducted, and the system works well. It proves that the system can guarantee divers welding safely and successfully and high quality weld seam is expected to be acquired.展开更多
In this paper the establishment and application of a time dependent measuring system for welding deformation are presented which is established with high quality sensors shielded from strong welding interference. By ...In this paper the establishment and application of a time dependent measuring system for welding deformation are presented which is established with high quality sensors shielded from strong welding interference. By using this system, vertical and horizontal displacements of the high temperature area are surveyed at the same time. And this system is also used for monitoring and controlling the deformation of real welded structures.展开更多
Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-...Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-quality metal parts by WAAM,several problems about the heat build-up,the deposit-path optimization,and the stability of the process parameters need to be well addressed.To overcome these issues,a new WAAM method based on the double electrode micro plasma arc welding(DE-MPAW)was designed.The circuit principles of different metal-transfer models in the DE-MPAW deposition process were analyzed theoretically.The effects between the parameters,wire feed rate and torch stand-off distance,in the process of WAAM were investigated experimentally.In addition,a real-time DE-MPAW control system was developed to optimize and stabilize the deposition process by self-adaptively changing the wire feed rate and torch stand-off distance.Finally,a series of tests were performed to evaluate the control system’s performance.The results show that the capability against interferences in the process of WAAM has been enhanced by this self-adaptive adjustment system.Further,the deposition paths about the metal part’s layer heights in WAAM are simplified.Finally,the appearance of the WAAM-deposited metal layers is also improved with the use of the control system.展开更多
Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controll...Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.展开更多
Aiming at the welding condition of space complex seam is uncertain and the intelligence of welding robot is unideal, a two-wheeled mobile robot is developed. It not only has the capacity of autonomous decision and avo...Aiming at the welding condition of space complex seam is uncertain and the intelligence of welding robot is unideal, a two-wheeled mobile robot is developed. It not only has the capacity of autonomous decision and avoiding obstacles, but also can flexibly move and strongly adapt variable environment. The composition of the welding robot is described and the dynamic model is established. The feasible control strategy and control algorithm is put forward. The simulation experiments of real world are conducted, the results are satisfying.展开更多
In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efficiency. This paper presents an architecture design of human-machine interface for ...In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efficiency. This paper presents an architecture design of human-machine interface for welding telerobotic system: welding multi-modal human-machine interface. The human-machine interface integrated several control modes, which are namely shared control, teleteaching, supervisory control and local autonomous control. Space mouse, panoramic vision camera and graphics simulation system are also integrated into the human-machine interface for welding teleoperation. Finally, weld seam tracing and welding experiments of U-shape seam are performed by these control modes respectively. The results show that the system has better performance of human-machine interaction and complexity environment welding.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Numbers 51375173).
文摘To satisfy the demand for good quality underwater welding and maintenance of nuclear power stations,a set of local dry automatic welding systems has been developed.These systems were based on an underwater robot that consisted of a special high-power underwater welding power supply,diving wire feeder,mini drain cap,welding robot,and special underwater welding torch.With a digital signal controller microprocessor as its core and combined with a dual inverter topology,the welding power supply was characterized by full-digital construction and multi-waveform flexible output.A compact diving wire feeding device was designed,based on the armature voltage negative feedback and high-frequency chopping pulse width modulation.This device yielded a high-efficiency seal of the driving motor with the help of dynamic and static sealing technology.To overcome the difficulty of local protection and deslagging in the welding area,a mini drain cap(with a duplexgas structure)based on the principle of the convergent nozzle was designed.The practical tests and the underwater welding experiments revealed that the underwater robotic local dry welding system is quite feasible.That is,the system could strike the arc stably and reliably in the shallow water environment,and formed beautiful welding seams.
文摘Teleoperation control strategies for collaborative welding system which is targeting at giving full play to human’s superiority is designed and the fitness for teleoperation welding task of which are studied. During the teleoperation welding process, 6-DOF controller’s signal can be converted into welding torch’s position, velocity or acceleration changing which is being controlled. For welding purposes, control strategies of four modes are designed, which are static position and posture mode, dynamic position and posture mode, velocity mode and acceleration mode. A test and analysis system for testing the tracking accuracy and reliability of control strategy based on virtual reality is developed. The tracking accuracies of the four control strategies are studied in the following tests with straight line trajectory, curve trajectory or space curve trajectory. The results show that the control strategy in dynamic position and posture mode has best stability and strong adaptability which is the most suitable for the teleoperation system.
文摘According to the requirements of welding process for vortex type compressor of air conditioner manufactured in product line, a special girth welding machine with PLC as control core was developed, which had both upright and 45 ° incline service positions. And some key technologies were researched, such as structural design of machine body, reliable conduction of rotary weldments and quality control of welding process and so on. The experimental results showed that this machine could satisfy the requirements of welding quality and girth welding technology, results also proved the machine was a high-effwiency and low-cost automatic welding device.
基金This project is supported by Doctor's Research Fund of Science Education Ministry of China(No.20060214004)Scientific Research Fund Education Ministry of China(No.206041)Scientific Research Fund of Harbin Sci-ence Bureau China(No.20051AAICG037).
文摘The robust control law for gas tungsten arc welding dynamic process, which is a typical sampled-data system and full of uncertainties, is presented. By using the Lyapunov, second method, the robust control and robust optimal control for a class of sampled-data systems whose underlying continuous-time systems are subjected to structured uncertainties are discussed in time-domain. As a result, some sufficient conditions of robust stability and the corresponding robust control laws are derived. All these results are designed by solving a class of linear matrix inequalities (LMIs) and a class of dynamic optimization problem with LMIs constraints respectively. An example adapted under some experimental conditions in the dynamic process of gas tungsten arc welding system in which the controlled variable is the backside width of weld pool and controlling variable pulse duty ratio, is worked out to illustrate the proposed results, it is shown that the sampling period is the crucial design oarameter.
基金Yanhai Lin was supported by the National Natural Science Foundation of China(Grant No.11702101)the Fundamental Research Funds for the Central Universities and the Promo-tion Program for Young and Middle aged Teacher in Science and Technology Research of Huaqiao University(Grant No.ZQN-PY502)+1 种基金the Natural Science Foundation of Fujian Province(Grant No.2019105093)Quanzhou High-Level Talents Support Plan.
文摘In this paper a modifed continuous energy law was explored to investigate transport behavior in a gas metal arc welding(GMAW)system.The energy law equality at a discrete level for the GMAW system was derived by using the finite element scheme.The mass conservation and current density continuous equation with the penalty scheme was applied 10 improve the stability.According to the phase-field model coupled with the energy law preserving method,the GMAW model was discretized and a metal transfer process with a pulse current was simulated.It was found that the numerical solution agrees well with the data of the metal transfer process obtained by high-speed photography.Compared with the numerical solution of the volume of fuid model,which was widely studied in the GMAW system based on the finite element method Euler scheme,the energy law preserving method can provide better accuracy in predicting the shape evolution of the droplet and with a greater computing efficiency.
文摘To develop a control system of cantilever arm for barrels welding, a motion controller has been developed to fit the welding procedure. The main research fields of the controller are: (1) finding effective measures to protect the controller against interferences; (2) decreasing welding current gradually in order to alleviate arc craters which are harmful to seam forming and welding quality; (3) planning the arm velocity to minimize the influence of the arm swing on arc length regulator; (4) adopting adaptive control algorithm with PD feedback and velocity feed-forward to reduce the influence of system inertia and velocity planning on the system transient performance.
基金This research is supported by National Natural Science Foundation of China (No. 50905043).
文摘Welding seam tracking precision was decreased due to human hand tremor during the master-slave welding teleoperation. To solve this problem, a master-slave robot remote welding system was built, the system consisted of a master manipulator with six degree of freedom ( DOF ) , an industrial computer control system and a slave Motoman HP3 J robot, and human hand tremor and digital filtering were discussed. An optimal digital filter was designed to clean human tremor signal for improving the welding seam tracking precision. The experimental results show that the digital filter suppresses the operator' s tremor signal.
文摘This paper presents an integrated simulation model for full digital controlled PMIG/MAG welding system with Matlab/Simulink, and it consists of power inverter, digital control system and dynamic arc-load model. An integrated simulation study was done for full digital PMIG/MAG welding, and a method of connecting dynamic arc-load model to the system with controlled current source was presented, in addition, the simulation results were utilized to study the issues of digital control PMIG/MAG welding in this paper. The experimental results validated the developed simulation model, and this simulation study can be applied in implementation of the full digital PMIG/MAG welding and analysis of system dynamic process.
文摘Based on the pulsed plasma arc welding(PPAW),a rapid remanufacturing shaping system,including a structured light scanning reverse engineering(RE)system,a robot system and a PPAW source system have been developed.The new rapid remanufacturing shaping system can rapidly and accurately repair the worn parts with different damaged degrees and thus extend their life cycle.In the present paper,the whole process of repairing worn parts is described.Firstly,the scanning model of a worn part is obtained by using RE system based on reconstructing approach.Compared with standard CAD model in the undamaged setting,the surface profile and the extent of damage area are obtained.Secondly,the weld repair path is designed by slicing the point cloud model of damage area.This path consists of multilayer parallel lines that produce parallel overlapped weld beads which cover the damaged area.By off-line programming techniques,the robot executable program as document format is transmitted to the robot controller for repairing worn parts.Finally,the weld repair experiments on worn steel plane plate and damaged column are performed to evaluate the remanufacturing system.
文摘In this paper, neural network control systems for decreasing the spatter of CO2 welding have been created. The Generalized inverse Learning Architecture(GILA), the SPecialized inverse Learning Architecture(SILA)-I & H and the Error Back Propagating Model(EBPM) are adopted respectively to simulate the static and dynamic welding control processes. The results of simulation and experiment show that the SILA-I and EBPM have betted properties. The factors affecting the simulating results and the dynamic response quality have also been analyzed.
基金This project is supported by Municipal Key Science Foundation of Shenyang,China(No.1041020-1-04)Provincial Natural Science Foundation of Liaoning,China(No.20031022).
文摘The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.
基金This work is supported by the National Natural Science Foundation of China (No. 51205026) and the Natural Science Foundation of Beijing ( No. 3102012).
文摘Because of relatively large protective area and good underwater welding quality, chamber underwater welding has a great using prospect in spent fuel pool maintenance at nuclear power plant. A chamber local dry automatic underwater welding test system with a data acquisition platform is developed, drainage seal tests in a water tank are carried out and the data acquired from the tests are analyzed. The results show that the chamber local dry underwater welding test system can achieve good drainage seal, the drainage effect is enhanced with the increase of the drainage gas flow rate and the drainage time. The results establish the foundation of the research of chamber local dry underwater welding.
文摘A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.
基金Project(KRF-2010-0003259)supported by the Korea Research Foundation Grant funded by the Korean Government
文摘Aluminum welding using a hybrid system with a laser and scanner welding head was performed under various welding conditions to verify the feasibility of applying an aluminum alloy to a car body.The experimental material was 5J32 aluminum alloy,and the laser power,welding speed,and laser incidence angle were used as the control variables.The weld bead shape and the tensile shear strength were evaluated in order to understand the aluminum lap joint weld characteristics.Analysis of variance (ANOVA) was conducted to identify the effect of the process variables on the tensile shear strength.Tensile strength estimation models using three different regression models were also suggested.The input variables were the laser power,welding speed,and laser incidence angle,and the output was the tensile shear strength.Among the models,the second-order polynomial estimation model had the best estimation performance,and the average error rate of this model was 0.058.
基金This research is supported by the National Natural Science Foundation of China (No. 51105237 and No. 51105103).
文摘Compared to traditional welding methods, the underwater wet welding is special with many different characteristics due to the unique aqueous environment. It is conducted completely under water by divers and unique welding technology is required in the special operation environment. The operating levels of the divers are the key factor to acquire high quality welded joints. In this paper, an underwater wet welding experimental and divers training system is developed to serve divers training and conducting welding experiments. The system consists of life support system, signals real-time monitoring system and communicating system, etc. An underwater butt welding experiment based on welding electrodes is conducted, and the system works well. It proves that the system can guarantee divers welding safely and successfully and high quality weld seam is expected to be acquired.
文摘In this paper the establishment and application of a time dependent measuring system for welding deformation are presented which is established with high quality sensors shielded from strong welding interference. By using this system, vertical and horizontal displacements of the high temperature area are surveyed at the same time. And this system is also used for monitoring and controlling the deformation of real welded structures.
基金Supported by National Natural Science Foundation of China(Grant No.51665034).
文摘Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-quality metal parts by WAAM,several problems about the heat build-up,the deposit-path optimization,and the stability of the process parameters need to be well addressed.To overcome these issues,a new WAAM method based on the double electrode micro plasma arc welding(DE-MPAW)was designed.The circuit principles of different metal-transfer models in the DE-MPAW deposition process were analyzed theoretically.The effects between the parameters,wire feed rate and torch stand-off distance,in the process of WAAM were investigated experimentally.In addition,a real-time DE-MPAW control system was developed to optimize and stabilize the deposition process by self-adaptively changing the wire feed rate and torch stand-off distance.Finally,a series of tests were performed to evaluate the control system’s performance.The results show that the capability against interferences in the process of WAAM has been enhanced by this self-adaptive adjustment system.Further,the deposition paths about the metal part’s layer heights in WAAM are simplified.Finally,the appearance of the WAAM-deposited metal layers is also improved with the use of the control system.
文摘Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.
文摘Aiming at the welding condition of space complex seam is uncertain and the intelligence of welding robot is unideal, a two-wheeled mobile robot is developed. It not only has the capacity of autonomous decision and avoiding obstacles, but also can flexibly move and strongly adapt variable environment. The composition of the welding robot is described and the dynamic model is established. The feasible control strategy and control algorithm is put forward. The simulation experiments of real world are conducted, the results are satisfying.
文摘In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efficiency. This paper presents an architecture design of human-machine interface for welding telerobotic system: welding multi-modal human-machine interface. The human-machine interface integrated several control modes, which are namely shared control, teleteaching, supervisory control and local autonomous control. Space mouse, panoramic vision camera and graphics simulation system are also integrated into the human-machine interface for welding teleoperation. Finally, weld seam tracing and welding experiments of U-shape seam are performed by these control modes respectively. The results show that the system has better performance of human-machine interaction and complexity environment welding.