Optical coherence tomography(OCT)allows a direct and precise measurement of laser welding depth by coaxially measuring the keyhole depth and can be used for process monitoring and control.When OCT measurement was take...Optical coherence tomography(OCT)allows a direct and precise measurement of laser welding depth by coaxially measuring the keyhole depth and can be used for process monitoring and control.When OCT measurement was taken during single-beam laser welding,the keyhole instability of aluminum welding resulted in highly scattered OCT data and complicated the welding depth extraction methods.As a combination of an inner core beam and an outer ring beam,a novel adjustable ring mode(ARM)laser for producing a stable keyhole was applied to the OCT measurement.Different ARM laser power arrangements were conducted on aluminum and copper.The results indicated that the ring beam greatly improved the stability of the core beam-induced keyhole,and smooth welding depth can be extracted from the concentrated OCT data.展开更多
Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal ...Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal is studied, Under the experimental conditions, the plasma optic signal has good response to variety of the weld penetration, and the signal's RMS value increases with the penetration in a quadratic curve mode. The inherent relation between the plasma optic signal and the penetration depth is also analyzed. It is also found that, between the two common parameters of laser power and welding speed, laser power has more influence on penetration while welding speed has more influence on weld width. The research results provide theoretic and practical bases for penetration real-time monitoring or predicting in partial-penetration laser welding,展开更多
Many applications of ultrasonic-assisted methods were used during metal solidification, but they could not be introduced into weld pool. In this paper, a way of ultrasonic assisted TIG welding is introduced. By direct...Many applications of ultrasonic-assisted methods were used during metal solidification, but they could not be introduced into weld pool. In this paper, a way of ultrasonic assisted TIG welding is introduced. By directly imposed ultrasonic vibration on welding arc, the vibration interacts with arc plasma and passes to the weld pool. Measurement results show that arc pressure is significantly increased with the ultrasonic vibration and the arc pressure distribution models are changed. Bead-on-plate welding tests on SUS304 confirm that this technology can influence the style of metal melting and increase weld penetration depth.展开更多
X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base...X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base steel were observed with OM(optical microscope) and SEM(scanning electron microscope), respectively. The experimental results show that there is main acicular ferrite in the base steel and welded zone, the microscopic structure of fusion zone is a blocked bainite, and the heat affected zone is composed of multilateral ferrite and pearlite. M-A unit of the welded zone is the main factor to strengthen the welded zone, composed of acicular ferrites. The percentage of cavities in the welded joint is less than that in the base steel, which is beneficial to increasing its mechanical performance and corrosion resistance. The fusion depth in the fusion zone and welded zone is 101.13 μm and 115.85 μm, respectively, and the distribution of chemical elements in the welded zone is uniform, no enrichment phenomena.展开更多
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c...An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.展开更多
基金supported by the National Natural Science Foundation of China(No.12002215)the China Postdoctoral Science Foundation(No.2022T150437)the National Key Research and Development Program of China(No.2019YFC1511102)。
文摘Optical coherence tomography(OCT)allows a direct and precise measurement of laser welding depth by coaxially measuring the keyhole depth and can be used for process monitoring and control.When OCT measurement was taken during single-beam laser welding,the keyhole instability of aluminum welding resulted in highly scattered OCT data and complicated the welding depth extraction methods.As a combination of an inner core beam and an outer ring beam,a novel adjustable ring mode(ARM)laser for producing a stable keyhole was applied to the OCT measurement.Different ARM laser power arrangements were conducted on aluminum and copper.The results indicated that the ring beam greatly improved the stability of the core beam-induced keyhole,and smooth welding depth can be extracted from the concentrated OCT data.
基金This project is supported by National Defense Science Foundation of China (No.614010).
文摘Through sampling and analyzing of plasma optic signals of 400-600 nm emitted from partial-penetration laser welding processes, how the penetration depth is related to the welding parameter and the plasma optic signal is studied, Under the experimental conditions, the plasma optic signal has good response to variety of the weld penetration, and the signal's RMS value increases with the penetration in a quadratic curve mode. The inherent relation between the plasma optic signal and the penetration depth is also analyzed. It is also found that, between the two common parameters of laser power and welding speed, laser power has more influence on penetration while welding speed has more influence on weld width. The research results provide theoretic and practical bases for penetration real-time monitoring or predicting in partial-penetration laser welding,
文摘Many applications of ultrasonic-assisted methods were used during metal solidification, but they could not be introduced into weld pool. In this paper, a way of ultrasonic assisted TIG welding is introduced. By directly imposed ultrasonic vibration on welding arc, the vibration interacts with arc plasma and passes to the weld pool. Measurement results show that arc pressure is significantly increased with the ultrasonic vibration and the arc pressure distribution models are changed. Bead-on-plate welding tests on SUS304 confirm that this technology can influence the style of metal melting and increase weld penetration depth.
基金Funded by the Chief Expert (Engineer) Project of Jiangsu Provincial Association for Science(No.2013-216)the Innovation Program of Graduated Student of Jiangsu Province(CXLX2014-1098)
文摘X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base steel were observed with OM(optical microscope) and SEM(scanning electron microscope), respectively. The experimental results show that there is main acicular ferrite in the base steel and welded zone, the microscopic structure of fusion zone is a blocked bainite, and the heat affected zone is composed of multilateral ferrite and pearlite. M-A unit of the welded zone is the main factor to strengthen the welded zone, composed of acicular ferrites. The percentage of cavities in the welded joint is less than that in the base steel, which is beneficial to increasing its mechanical performance and corrosion resistance. The fusion depth in the fusion zone and welded zone is 101.13 μm and 115.85 μm, respectively, and the distribution of chemical elements in the welded zone is uniform, no enrichment phenomena.
基金National Natural Science Foundation of China and Provincial Natural Science Foundafion of Guangdong, China.
文摘An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately.