Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) w...Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) weirs. However, the scale effects downstream of these single-type weirs have not been thoroughly investigated. This study examined the scale effects on flows over a combined weir system consisting of an ogee weir and a sharp-crested weir, both upstream and downstream, utilizing physical modeling at a 1:33.33 scale based on Froude similarity and three-dimensional (3D) computational fluid dynamics (CFD) modeling. The sharp-crested weir in this study was represented by two sluice gates that remain closed and submerged during flood events. The experimental data confirmed that the equivalent discharge coefficients of the combined weir system behaved similarly to those of a sharp-crested weir across various H/P (where H is the total head, and P is the weir height) values. However, scale effects on the discharge rating curve due to surface tension and viscosity could only be minimized when H/P > 0.4, Re > 26 959, and We > 240 (where Re and We are the Reynolds and Weber numbers, respectively), provided that the water depth exceeded 0.042 m above the crest. Additionally, Re greater than 4 × 104 was necessary to minimize scale effects caused by viscosity in flows in the spillway channel and stilling basin (with baffle blocks). The limiting criteria aligned closely with existing literature. This study offers valuable insights for practical applications in hydraulic engineering in the future.展开更多
[Objective]The construction of weirs changes the hydraulic characteristics of rivers and affects the structure of phytoplankton communities and the health of aquatic ecosystems in the river.This study aims to explore ...[Objective]The construction of weirs changes the hydraulic characteristics of rivers and affects the structure of phytoplankton communities and the health of aquatic ecosystems in the river.This study aims to explore the nonlinear response relationship between phytoplankton community structure and its driving factors in spring and autumn in Furong Creek under the construction of cascade weirs.[Methods]The structure of phytoplankton communities and related environmental factors were investigated in Furong Creek from 2023 to 2024.This study focused on the analysis of the changes of nutrient concentrations and biomass of phytoplankton in autumn and spring within the same dry season in Furong Creek.Redundancy analysis was used to identify the key factors influencing the structure of phytoplankton communities.The MIKE 11 model was employed to simulate the hydrodynamic changes in the river.Combined with total nitrogen and permanganate index,a GAM model of phytoplankton diversity index and hydrodynamic factors was developed,and the change of phytoplankton diversity after the optimized layout of the cascade weirs was fitted.[Results]The result showed that the annual average value of Shannon-Wiener diversity index of phytoplankton in Furong Creek was 2.79,which was in a state of mild pollution.A total of 239 species from 95 genera in 8 phyla were identified.Among the phytoplankton,Chlorophyta was the dominant group throughout the year in Furong Creek,followed by Bacillariophyta and Cyanophyta.The cell abundance of phytoplankton ranged from 3.11 to 20.64 mg/L and from 0.23 to 6.31 mg/L in spring and autumn,which indicated a clear seasonal succession of phytoplankton community structure.Compared with autumn,the relative abundance of Cyanophyta significantly decreased in spring across the whole river section,while Chrysophyta and Dinophyta showed significant increase at some monitoring sites,leading to water bloom phenomenon and a noticeable decline in the diversity of phytoplankton.The dominant species in the water bodies throughout the year were Cyclotella catenata,Chlorella vulgaris,Scenedesmus bijuga,Scenedesmus quadricauda,Chroomonas acuta,Cryptomonas ovata,and Cryptomonas erosa.Redundancy analysis(RDA)showed that hydrodynamic factors(v,h)and water environmental factors(TN,COD_(Mn))were the main influencing factors of phytoplankton community structure.[Conclusion]The result show that the nutrient concentration,phytoplankton biomass,and density in Furong Creek in spring are significantly higher than in autumn.The GAM model,constructed by combining hydrodynamic and environmental factors,can effectively reflect the nonlinear relationship between phytoplankton diversity index and its driving factors.In spring,with an increase in nutrient concentration,the habitat conditions of low flow speed and high water depths formed by overflow weirs will lead to a decrease in the Shannon-Wiener index of phytoplankton and an intensified risk of eutrophication.However,a reasonable layout scheme of cascade weirs will improve the diversity of phytoplankton and reduce the risk of eutrophication in the river.The findings of this study can help deepen the understanding of the ecological and environmental effects of cascade weir construction in the river.展开更多
In order to explore the advantages of the triangular weir fishway and the influence of the angle of the triangular weir fishway on fish migration,this paper simulates the internal flow field and free surface of the fi...In order to explore the advantages of the triangular weir fishway and the influence of the angle of the triangular weir fishway on fish migration,this paper simulates the internal flow field and free surface of the fishway by using large eddy simulation(LES)and volume of fluid(VOF)method,respectively,and analyzes the hydraulic characteristics of the triangular weir at the three angles,where for the analysis of turbulent structure,omega(Ω)eddy identification is also used.And based on the analysis results,the length of the pool chamber and the height of obstacles were changed to obtain a more stable flow regime.The results show that the main flow is obvious,the turbulent kinetic energy distribution is regular and small in value,and the angle has an effect on the return flow.The vortex structure mainly existed in the mainstream area with high flow velocity,the air-liquid interface and the porosity,and was distributed transversely.90°triangular weir had the largest vortex structure,and 105°triangular weir had the smallest.75°triangular weir fishway could effectively attenuate the energy of the main stream,and the area of high velocity flow was small,which made the migratory conditions more favorable.Adding obstructions to the mainstem area can reduce flow velocity and turbulent kinetic energy.The triangular weir structure can improve the flow structure of the fishway,and the different angles and water depths provide a variety of flow conditions for a variety of fish migrations,providing new ideas for the fishway.展开更多
The broad-crested weir is convenient to construct and has a small amount of ex-cavation,widely used in practical engineering.Discharge computing has been the focus of research on this structure,thus developing general...The broad-crested weir is convenient to construct and has a small amount of ex-cavation,widely used in practical engineering.Discharge computing has been the focus of research on this structure,thus developing generalized regression neural network(GRNN),genetic programming(GP),and extreme learning machine(ELM)are used to predict the discharge coefficient(Cd)of the triangular broad-crested weir.The comprehensive analysis shows that the ELM model has high stability,predictive ability,and computational speed.The coefficient of determination(R^2)is 0.99982,the mean absolute percentage error(MAPE)is 0.000261,the Nash-Sutcliffe coefficient(NSE)is 0.99977,and the root means square error(RMSE)is 4.17E-05 in the testing phase.The apex angleθis the most critical parameter affecting the Cd,and the contribution to the Cd is 52.45%.A new computational formula is proposed and compared with the accuracy of empirical formulas,showing that the intelligent method has higher accuracy and efficiency.展开更多
Weirs are a type of hydraulic structure, used for water level adjustment, flow measurement, and diversion of water in irrigation systems. In this study, experiments were conducted on sharp-crested weirs under free-flo...Weirs are a type of hydraulic structure, used for water level adjustment, flow measurement, and diversion of water in irrigation systems. In this study, experiments were conducted on sharp-crested weirs under free-flow conditions and an optimization method was used to determine the best form of the discharge coefficient equation based on the coefficient of determination (R2) and root mean square error (RMSE). The ability of the numerical method to simulate the flow over the weir was also investigated using Fluent software. Results showed that, with an increase of the ratio of the head over the weir crest to the weir height (h/P), the discharge coefficient decreased nonlinearly and reached a constant value of 0.7 for hiP 〉 0.6. The best form of the discharge coefficient equation predicted the discharge coefficient well and percent errors were within a ±5% error limit. Numerical results of the discharge coefficient showed strong agreement with the experimental data. Variation of the discharge coefficient with Reynolds numbers showed that the discharge coefficient reached a constant value of 0.7 when hiP 〉 0.6 and Re 〉 20000.展开更多
Labyrinth weirs provide higher discharge capacity than conventional weirs, with the ability to pass large flows at comparatively low heads. Labyrinth weirs are primarily used as spillways for dams where the spillway w...Labyrinth weirs provide higher discharge capacity than conventional weirs, with the ability to pass large flows at comparatively low heads. Labyrinth weirs are primarily used as spillways for dams where the spillway width is restricted. In recent years, many research investigations have considered the hydraulic performance of labyrinth weirs, particularly as dependent on the geometric features. The previous work has improved the design basis for such weirs. However, their design still requires experimentally derived and generalized performance curves. It is especially important to observe the behavior of the weir nappe to ensure the design provides hydraulic optimization and to account for pressure fluctuations, possible vibrations, resonance effect, noise and flow surging. In the present study, discharge coefficients were experimentally determined for both circular labyrinth weirs and sharp crested trapezoidal labyrinth weirs of varying side wall angle (α). Additional studies were completed with nappe breakers included to reduce the impact of vibration on the labyrinth weirs. In general, the test data indicated that nappe breakers placed on the trapezoidal labyrinth weirs and circular labyrinth weirs reduced the discharge coefficient by up to 4% of the un-amended weir.展开更多
Tundish is an important metallurgical reactor in the continuous castingprocess. In order to control the fluid flow in tundish and thus take full advantage of the residencetime available for the removal of inclusions f...Tundish is an important metallurgical reactor in the continuous castingprocess. In order to control the fluid flow in tundish and thus take full advantage of the residencetime available for the removal of inclusions from molten steel, the effect of weir and dam on thefluid flow has been studied in a water model based on the characteristic number Froude and Reynoldnumber similarity criteria. The residence time distribution curves of the flow were measured bySG800. The optimum arrangement of darn and weir and the nonstationary flow in tundish werediscussed. The results show that the combination of weir and dam is benefit for the flow pattern intundish, weir can prevent the upper recirculating flow, dam can cut off the bottom flow and turn toupwards, it is advantageous to separate the nonmetallic inclusions. Furthermore, it is important toexceed the critical depth of bath during exchange ladles, not only for the inclusion floatation butalso for avoiding tundish slag drainage earlier.展开更多
This study focused on hydraulic characteristics around a gear-shaped weir in a straight channel. Systematic experiments were carried out for weirs with two different gear heights and eight groups of geometrical parame...This study focused on hydraulic characteristics around a gear-shaped weir in a straight channel. Systematic experiments were carried out for weirs with two different gear heights and eight groups of geometrical parameters. The impacts of various geometrical parameters of gear-shaped weirs on the discharge capacity were investigated. The following conclusions are drawn from the experimental study:(1) The discharge coefficient(m_c) was influenced by the size of the gear: at a constant discharge, the weir with larger values of a/b(a is the width of the gear, and b is the width between the two neighboring gears) and a/c(c is the height of the gear) had a smaller value of m_c. The discharge capacity of the gear-shaped weir was influenced by the water depth in the weir.(2) For type C1 with a gear height of 0.01 m, when the discharge was less than 60m^3/h and H_1=P < 1.0(H_1 is the water depth at the low weir crest, and P is the weir height), m_c significantly increased with the discharge and H_1=P; with further increases of the discharge and H_1=P, m_cshowed insignificant decreases and fluctuated within small ranges. For type C2 with a gear height of 0.02 m, when the discharge was less than 60m^3/h and H_1=P < 1.0, m_csignificantly increased with the discharge and H_1=P; when the discharge was larger than 60m^3/h and H_1=P > 1.0, m_c slowly decreased with the increases of the discharge and H_1=P for a=b 1.0 and a=c 1.0, and slowly increased with the discharge and H_1=P for a=b > 1.0 and a=c > 1.0.(3) A formula of m_cfor gear-shaped weirs was established based on the principle of weir flow, with consideration of the water depth in the weir, the weir height and width, and the height of the gear.展开更多
基金supported by the Ministry of Public Works and Housing of Indonesia and Parahyangan Catholic University(Grant No.II/PD/2023-07/02-SJ).
文摘Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) weirs. However, the scale effects downstream of these single-type weirs have not been thoroughly investigated. This study examined the scale effects on flows over a combined weir system consisting of an ogee weir and a sharp-crested weir, both upstream and downstream, utilizing physical modeling at a 1:33.33 scale based on Froude similarity and three-dimensional (3D) computational fluid dynamics (CFD) modeling. The sharp-crested weir in this study was represented by two sluice gates that remain closed and submerged during flood events. The experimental data confirmed that the equivalent discharge coefficients of the combined weir system behaved similarly to those of a sharp-crested weir across various H/P (where H is the total head, and P is the weir height) values. However, scale effects on the discharge rating curve due to surface tension and viscosity could only be minimized when H/P > 0.4, Re > 26 959, and We > 240 (where Re and We are the Reynolds and Weber numbers, respectively), provided that the water depth exceeded 0.042 m above the crest. Additionally, Re greater than 4 × 104 was necessary to minimize scale effects caused by viscosity in flows in the spillway channel and stilling basin (with baffle blocks). The limiting criteria aligned closely with existing literature. This study offers valuable insights for practical applications in hydraulic engineering in the future.
文摘[Objective]The construction of weirs changes the hydraulic characteristics of rivers and affects the structure of phytoplankton communities and the health of aquatic ecosystems in the river.This study aims to explore the nonlinear response relationship between phytoplankton community structure and its driving factors in spring and autumn in Furong Creek under the construction of cascade weirs.[Methods]The structure of phytoplankton communities and related environmental factors were investigated in Furong Creek from 2023 to 2024.This study focused on the analysis of the changes of nutrient concentrations and biomass of phytoplankton in autumn and spring within the same dry season in Furong Creek.Redundancy analysis was used to identify the key factors influencing the structure of phytoplankton communities.The MIKE 11 model was employed to simulate the hydrodynamic changes in the river.Combined with total nitrogen and permanganate index,a GAM model of phytoplankton diversity index and hydrodynamic factors was developed,and the change of phytoplankton diversity after the optimized layout of the cascade weirs was fitted.[Results]The result showed that the annual average value of Shannon-Wiener diversity index of phytoplankton in Furong Creek was 2.79,which was in a state of mild pollution.A total of 239 species from 95 genera in 8 phyla were identified.Among the phytoplankton,Chlorophyta was the dominant group throughout the year in Furong Creek,followed by Bacillariophyta and Cyanophyta.The cell abundance of phytoplankton ranged from 3.11 to 20.64 mg/L and from 0.23 to 6.31 mg/L in spring and autumn,which indicated a clear seasonal succession of phytoplankton community structure.Compared with autumn,the relative abundance of Cyanophyta significantly decreased in spring across the whole river section,while Chrysophyta and Dinophyta showed significant increase at some monitoring sites,leading to water bloom phenomenon and a noticeable decline in the diversity of phytoplankton.The dominant species in the water bodies throughout the year were Cyclotella catenata,Chlorella vulgaris,Scenedesmus bijuga,Scenedesmus quadricauda,Chroomonas acuta,Cryptomonas ovata,and Cryptomonas erosa.Redundancy analysis(RDA)showed that hydrodynamic factors(v,h)and water environmental factors(TN,COD_(Mn))were the main influencing factors of phytoplankton community structure.[Conclusion]The result show that the nutrient concentration,phytoplankton biomass,and density in Furong Creek in spring are significantly higher than in autumn.The GAM model,constructed by combining hydrodynamic and environmental factors,can effectively reflect the nonlinear relationship between phytoplankton diversity index and its driving factors.In spring,with an increase in nutrient concentration,the habitat conditions of low flow speed and high water depths formed by overflow weirs will lead to a decrease in the Shannon-Wiener index of phytoplankton and an intensified risk of eutrophication.However,a reasonable layout scheme of cascade weirs will improve the diversity of phytoplankton and reduce the risk of eutrophication in the river.The findings of this study can help deepen the understanding of the ecological and environmental effects of cascade weir construction in the river.
基金supported by the National Natural Science Foundation of China(Grant No.52069009).
文摘In order to explore the advantages of the triangular weir fishway and the influence of the angle of the triangular weir fishway on fish migration,this paper simulates the internal flow field and free surface of the fishway by using large eddy simulation(LES)and volume of fluid(VOF)method,respectively,and analyzes the hydraulic characteristics of the triangular weir at the three angles,where for the analysis of turbulent structure,omega(Ω)eddy identification is also used.And based on the analysis results,the length of the pool chamber and the height of obstacles were changed to obtain a more stable flow regime.The results show that the main flow is obvious,the turbulent kinetic energy distribution is regular and small in value,and the angle has an effect on the return flow.The vortex structure mainly existed in the mainstream area with high flow velocity,the air-liquid interface and the porosity,and was distributed transversely.90°triangular weir had the largest vortex structure,and 105°triangular weir had the smallest.75°triangular weir fishway could effectively attenuate the energy of the main stream,and the area of high velocity flow was small,which made the migratory conditions more favorable.Adding obstructions to the mainstem area can reduce flow velocity and turbulent kinetic energy.The triangular weir structure can improve the flow structure of the fishway,and the different angles and water depths provide a variety of flow conditions for a variety of fish migrations,providing new ideas for the fishway.
基金Xi'an University of Technology Excellent Master Seed Fund,Grant/Award Number:310/252082213。
文摘The broad-crested weir is convenient to construct and has a small amount of ex-cavation,widely used in practical engineering.Discharge computing has been the focus of research on this structure,thus developing generalized regression neural network(GRNN),genetic programming(GP),and extreme learning machine(ELM)are used to predict the discharge coefficient(Cd)of the triangular broad-crested weir.The comprehensive analysis shows that the ELM model has high stability,predictive ability,and computational speed.The coefficient of determination(R^2)is 0.99982,the mean absolute percentage error(MAPE)is 0.000261,the Nash-Sutcliffe coefficient(NSE)is 0.99977,and the root means square error(RMSE)is 4.17E-05 in the testing phase.The apex angleθis the most critical parameter affecting the Cd,and the contribution to the Cd is 52.45%.A new computational formula is proposed and compared with the accuracy of empirical formulas,showing that the intelligent method has higher accuracy and efficiency.
基金supported by NSFC(No.10871216 and No.11071267)Natural Science Foundation Project of CQ CSTC+1 种基金Science and Technology Research Project of Chongqing Municipal Education Commission(No.K J100419)the Excellent Young Teachers Program of Chongqing Jiaotong University,Chongqing,China
文摘Weirs are a type of hydraulic structure, used for water level adjustment, flow measurement, and diversion of water in irrigation systems. In this study, experiments were conducted on sharp-crested weirs under free-flow conditions and an optimization method was used to determine the best form of the discharge coefficient equation based on the coefficient of determination (R2) and root mean square error (RMSE). The ability of the numerical method to simulate the flow over the weir was also investigated using Fluent software. Results showed that, with an increase of the ratio of the head over the weir crest to the weir height (h/P), the discharge coefficient decreased nonlinearly and reached a constant value of 0.7 for hiP 〉 0.6. The best form of the discharge coefficient equation predicted the discharge coefficient well and percent errors were within a ±5% error limit. Numerical results of the discharge coefficient showed strong agreement with the experimental data. Variation of the discharge coefficient with Reynolds numbers showed that the discharge coefficient reached a constant value of 0.7 when hiP 〉 0.6 and Re 〉 20000.
文摘Labyrinth weirs provide higher discharge capacity than conventional weirs, with the ability to pass large flows at comparatively low heads. Labyrinth weirs are primarily used as spillways for dams where the spillway width is restricted. In recent years, many research investigations have considered the hydraulic performance of labyrinth weirs, particularly as dependent on the geometric features. The previous work has improved the design basis for such weirs. However, their design still requires experimentally derived and generalized performance curves. It is especially important to observe the behavior of the weir nappe to ensure the design provides hydraulic optimization and to account for pressure fluctuations, possible vibrations, resonance effect, noise and flow surging. In the present study, discharge coefficients were experimentally determined for both circular labyrinth weirs and sharp crested trapezoidal labyrinth weirs of varying side wall angle (α). Additional studies were completed with nappe breakers included to reduce the impact of vibration on the labyrinth weirs. In general, the test data indicated that nappe breakers placed on the trapezoidal labyrinth weirs and circular labyrinth weirs reduced the discharge coefficient by up to 4% of the un-amended weir.
文摘Tundish is an important metallurgical reactor in the continuous castingprocess. In order to control the fluid flow in tundish and thus take full advantage of the residencetime available for the removal of inclusions from molten steel, the effect of weir and dam on thefluid flow has been studied in a water model based on the characteristic number Froude and Reynoldnumber similarity criteria. The residence time distribution curves of the flow were measured bySG800. The optimum arrangement of darn and weir and the nonstationary flow in tundish werediscussed. The results show that the combination of weir and dam is benefit for the flow pattern intundish, weir can prevent the upper recirculating flow, dam can cut off the bottom flow and turn toupwards, it is advantageous to separate the nonmetallic inclusions. Furthermore, it is important toexceed the critical depth of bath during exchange ladles, not only for the inclusion floatation butalso for avoiding tundish slag drainage earlier.
基金supported by the National Natural Science Foundation of China(Grant No.51409155)
文摘This study focused on hydraulic characteristics around a gear-shaped weir in a straight channel. Systematic experiments were carried out for weirs with two different gear heights and eight groups of geometrical parameters. The impacts of various geometrical parameters of gear-shaped weirs on the discharge capacity were investigated. The following conclusions are drawn from the experimental study:(1) The discharge coefficient(m_c) was influenced by the size of the gear: at a constant discharge, the weir with larger values of a/b(a is the width of the gear, and b is the width between the two neighboring gears) and a/c(c is the height of the gear) had a smaller value of m_c. The discharge capacity of the gear-shaped weir was influenced by the water depth in the weir.(2) For type C1 with a gear height of 0.01 m, when the discharge was less than 60m^3/h and H_1=P < 1.0(H_1 is the water depth at the low weir crest, and P is the weir height), m_c significantly increased with the discharge and H_1=P; with further increases of the discharge and H_1=P, m_cshowed insignificant decreases and fluctuated within small ranges. For type C2 with a gear height of 0.02 m, when the discharge was less than 60m^3/h and H_1=P < 1.0, m_csignificantly increased with the discharge and H_1=P; when the discharge was larger than 60m^3/h and H_1=P > 1.0, m_c slowly decreased with the increases of the discharge and H_1=P for a=b 1.0 and a=c 1.0, and slowly increased with the discharge and H_1=P for a=b > 1.0 and a=c > 1.0.(3) A formula of m_cfor gear-shaped weirs was established based on the principle of weir flow, with consideration of the water depth in the weir, the weir height and width, and the height of the gear.