Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Si...Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.展开更多
Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different educ...Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different education stages is still limited.A new framework was established to evaluate the spatial heterogeneity and its influencing factors across all education stages(kindergarten,primary school,middle school,college)in 1100 schools at the urban scale of Xi’an,China.The research results show that:1)CGS is lower in the Baqiao district and higher in the Yanta and Xincheng districts of Xi’an City.‘Green wealthy schools are mainly concentrated in the Weiyang,Chang’an and Yanta districts.2)CGS of these schools in descending order is college(31.40%)>kindergarten(18.32%)>middle school(13.56%)>primary school(10.70%).3)Colleges have the most recreation sites(n(number)=2),the best education levels(11.93 yr),and the lowest housing prices(1.18×10^(4) yuan(RMB)/m^(2));middle schools have the highest public expenditures(3.97×10^(9) yuan/yr);primary schools have the highest CGS accessibility(travel time gap(TTG)=31.33).4)Multiscale Geographically Weighted Regression model and Spearman’s test prove that recreation sites have a significant positive impact on college green spaces(0.28–0.35),and education level has a significant positive impact on kindergarten green spaces(0.16–0.24).This research framework provides important insights for the assessment of school greening initiatives aimed at fostering healthier learning environments for future generations.展开更多
This study examined the influence of the built environment surrounding rail stations on rail transit ridership and its spatiotemporal variations,aiming to enhance rail transit operational efficiency and inform station...This study examined the influence of the built environment surrounding rail stations on rail transit ridership and its spatiotemporal variations,aiming to enhance rail transit operational efficiency and inform station planning and development.Data from 159 metro stations in Nanjing,collected over a 14-d period,were analyzed to identify changes in weekday and weekend ridership patterns.The analysis included explanatory variables grouped into three categories:urban spatial variables,socioeconomic vari-ables,and transit service variables.A geographically and temporally weighted regression(GTWR)model was developed,and its performance was compared with that of ordinary least squares(OLS)and geographically weighted regression(GWR)models.The results demonstrated that the GTWR model outperformed others in analyzing the relationship between rail transit ridership and the built environment.In addition,the coefficients of explanatory variables showed significant variation across spatiotemporal dimensions,revealing distinct patterns.Notably,the influence of commuter flows led to more pronounced temporal heterogeneity in the coefficients observed on weekdays.These findings offer valuable insights for optimizing urban public transportation systems and advancing integrated urban rail development.展开更多
The unmanned aerial vehicle(UAV)images captured under low-light conditions are often suffering from noise and uneven illumination.To address these issues,we propose a low-light image enhancement algorithm for UAV imag...The unmanned aerial vehicle(UAV)images captured under low-light conditions are often suffering from noise and uneven illumination.To address these issues,we propose a low-light image enhancement algorithm for UAV images,which is inspired by the Retinex theory and guided by a light weighted map.Firstly,we propose a new network for reflectance component processing to suppress the noise in images.Secondly,we construct an illumination enhancement module that uses a light weighted map to guide the enhancement process.Finally,the processed reflectance and illumination components are recombined to obtain the enhancement results.Experimental results show that our method can suppress the noise in images while enhancing image brightness,and prevent over enhancement in bright regions.Code and data are available at https://gitee.com/baixiaotong2/uav-images.git.展开更多
In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequen...In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.展开更多
The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu...The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.展开更多
The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(...The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.展开更多
In this paper,we study and characterize the volume estimates of geodesic balls on Finsler gradient Ricci solitons.We get the upper bounds on the volumes of geodesic balls of all three kinds of Finsler gradient Ricci s...In this paper,we study and characterize the volume estimates of geodesic balls on Finsler gradient Ricci solitons.We get the upper bounds on the volumes of geodesic balls of all three kinds of Finsler gradient Ricci solitons under certain condition about the Laplacian of thedistance function.展开更多
The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the...The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.展开更多
In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergen...In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.展开更多
The Yellow River Basin in Sichuan Province(YRS)is undergoing severe soil erosion and exacerbated ecological vulnerability,which collectively pose formidable challenges for regional water conservation(WC)and sustainabl...The Yellow River Basin in Sichuan Province(YRS)is undergoing severe soil erosion and exacerbated ecological vulnerability,which collectively pose formidable challenges for regional water conservation(WC)and sustainable development.While effectively enhancing WC necessitates a comprehensive understanding of its driving factors and corresponding intervention strategies,existing studies have largely neglected the spatiotemporal heterogeneity of both natural and socio-economic drivers.Therefore,this study explored the spatiotemporal heterogeneity of WC drivers in YRS using multi-scale geographically weighted regression(MGWR)and geographically and temporally weighted regression(GTWR)models from an eco-hydrological perspective.We discovered that downstream regions,which are more developed,achieved significantly better WC than upstream regions.The results also demonstrated that the influence of temperature and wind speed is consistently dominant and temporally stable due to climate stability,while the influence of vegetation shifted from negative to positive around 2010,likely indicating greater benefits from understory vegetation.Economic growth positively impacted WC in upstream regions but had a negative effect in the more developed downstream regions.These findings highlight the importance of targeted water conservation strategies,including locally appropriate revegetation,optimization of agricultural and economic structures,and the establishment of eco-compensation mechanisms for ecological conservation and sustainable development.展开更多
Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_...Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).展开更多
Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing...Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing factors in China is imperative for the efficient utilization of farmland and the optimization of land space.We used land use transfer matrix,geographically weighted regression model and geographical detector to conduct this study.Results showed that sloping farmland in China firstly decreased and then increased from 2000 to 2020.The proportion of sloping farmland decreased radially outward from Sichuan basin to the surrounding areas.Change rates of sloping farmland with different slopes varied and the slope with 6°-15°underwent the fastest changes.The influencing factors of farmland at various slope degrees were different.For sloping farmland below 15°,land use intensity and elevation had the greatest contribution.For sloping farmland between 15°and 25°,elevation,land use intensity,and population density were the main influencing factors.Sloping farmland above 25°was mostly affected by natural factors.This study can provide scientific basis for rational development and protection of sloping farmland.展开更多
BACKGROUND Advanced esophageal squamous cell carcinoma(ESCC)has an extremely poor prognosis.Preoperative chemoradiotherapy(CRT)can significantly prolong survival,especially in those who achieve pathological complete r...BACKGROUND Advanced esophageal squamous cell carcinoma(ESCC)has an extremely poor prognosis.Preoperative chemoradiotherapy(CRT)can significantly prolong survival,especially in those who achieve pathological complete response(pCR).However,the pretherapeutic prediction of pCR remains challenging.AIM To predict pCR and survival in ESCC patients undergoing CRT using an artificial intelligence(AI)-based diffusion-weighted magnetic resonance imaging(DWI-MRI)radiomics model.METHODS We retrospectively analyzed 70 patients with ESCC who underwent curative surgery following CRT.For each patient,pre-treatment tumors were semi-automatically segmented in three dimensions from DWI-MRI images(b=0,1000 second/mm^(2)),and a total of 76 radiomics features were extracted from each segmented tumor.Using these features as explanatory variables and pCR as the objective variable,machine learning models for predicting pCR were developed using AutoGluon,an automated machine learning library,and validated by stratified double cross-validation.RESULTS pCR was achieved in 15 patients(21.4%).Apparent diffusion coefficient skewness demonstrated the highest predictive performance[area under the curve(AUC)=0.77].Gray-level co-occurrence matrix(GLCM)entropy(b=1000 second/mm²)was an independent prognostic factor for relapse-free survival(RFS)(hazard ratio=0.32,P=0.009).In Kaplan-Meier analysis,patients with high GLCM entropy showed significantly better RFS(P<0.001,log-rank).The best-performing machine learning model achieved an AUC of 0.85.The predicted pCR-positive group showed significantly better RFS than the predicted pCR-negative group(P=0.007,log-rank).CONCLUSION AI-based radiomics analysis of DWI-MRI images in ESCC has the potential to accurately predict the effect of CRT before treatment and contribute to constructing optimal treatment strategies.展开更多
We investigate the incidence algebras arising from one-branch extensions of“rectangles”.There are four different ways to form such extensions,and all four kinds of incidence algebras turn out to be derived equivalen...We investigate the incidence algebras arising from one-branch extensions of“rectangles”.There are four different ways to form such extensions,and all four kinds of incidence algebras turn out to be derived equivalent.We provide realizations for all of them as endomorphism algebra of tilting modules or tilting complexes over a Nakayama algebra.Meanwhile,an unexpected derived equivalence between Nakayama algebras N(2r-1,r)and N(2r-1,r+1)has been found.As an application,we obtain the explicit formulas of the Coxeter polynomials for a large family of Nakayama algebras,i.e.,the Nakayama algebras N(n,r)with n/2<r<n.展开更多
Vision-based relative pose estimation plays a pivotal role in various space missions.Deep learning enhances monocular spacecraft pose estimation,but high computational demands necessitate model simplification for onbo...Vision-based relative pose estimation plays a pivotal role in various space missions.Deep learning enhances monocular spacecraft pose estimation,but high computational demands necessitate model simplification for onboard systems.In this paper,we aim to achieve an optimal balance between accuracy and computational efficiency.We present a Perspective-n-Point(PnP)based method for spacecraft pose estimation,leveraging lightweight neural networks to localize semantic keypoints and reduce computational load.Since the accuracy of keypoint localization is closely related to the heatmap resolution,we devise an efficient upsampling module to increase the resolution of heatmaps with minimal overhead.Furthermore,the heatmaps predicted by the lightweight models tend to show high-level noise.To tackle this issue,we propose a weighting strategy by analyzing the statistical characteristics of predicted semantic keypoints and substantially improve the pose estimation accuracy.The experiments carried out on the SPEED dataset underscore the prospect of our method in engineering applications.We dramatically reduce the model parameters to 0.7 M,merely 2.5%of that required by the top-performing method,and achieve lower pose estimation error and better real-time performance.展开更多
There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep ...There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep scenes.In order to recreate the intestinal wall in two dimensions,a method is developed.The normalized Laplacian algorithm is used to enhance the image and transform it into polar coordinates according to the characteristics that intestinal images are not obvious and usually arranged in a circle,in order to extract the new image segments of the current image relative to the previous image.The improved weighted fusion algorithm is then used to sequentially splice the segment images.The experimental results demonstrate that the suggested approach can improve image clarity and minimize noise while maintaining the information content of intestinal images.In addition,the method's seamless transition between the final portions of a panoramic image also demonstrates that the stitching trace has been removed.展开更多
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl...Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.展开更多
Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribu...Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights delegation.By introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced greatly.At the same time,a weighted tree structure is constructed to simplify the expression of access structure effectively.With conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal costs.The scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources.展开更多
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金supported by the Humanities and Social Sciences Project of the Ministry of Education of the Peoples Republic(No.21YJCZH099)the National Natural Science Foundation of China(Nos.41401089 and 41741014)the Science and Technology Project of Sichuan Province(No.2023NSFSC1979).
文摘Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.
基金Under the auspices of Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-196)。
文摘Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different education stages is still limited.A new framework was established to evaluate the spatial heterogeneity and its influencing factors across all education stages(kindergarten,primary school,middle school,college)in 1100 schools at the urban scale of Xi’an,China.The research results show that:1)CGS is lower in the Baqiao district and higher in the Yanta and Xincheng districts of Xi’an City.‘Green wealthy schools are mainly concentrated in the Weiyang,Chang’an and Yanta districts.2)CGS of these schools in descending order is college(31.40%)>kindergarten(18.32%)>middle school(13.56%)>primary school(10.70%).3)Colleges have the most recreation sites(n(number)=2),the best education levels(11.93 yr),and the lowest housing prices(1.18×10^(4) yuan(RMB)/m^(2));middle schools have the highest public expenditures(3.97×10^(9) yuan/yr);primary schools have the highest CGS accessibility(travel time gap(TTG)=31.33).4)Multiscale Geographically Weighted Regression model and Spearman’s test prove that recreation sites have a significant positive impact on college green spaces(0.28–0.35),and education level has a significant positive impact on kindergarten green spaces(0.16–0.24).This research framework provides important insights for the assessment of school greening initiatives aimed at fostering healthier learning environments for future generations.
基金The National Key Research and Development Program of China(No.2022YFC3800201).
文摘This study examined the influence of the built environment surrounding rail stations on rail transit ridership and its spatiotemporal variations,aiming to enhance rail transit operational efficiency and inform station planning and development.Data from 159 metro stations in Nanjing,collected over a 14-d period,were analyzed to identify changes in weekday and weekend ridership patterns.The analysis included explanatory variables grouped into three categories:urban spatial variables,socioeconomic vari-ables,and transit service variables.A geographically and temporally weighted regression(GTWR)model was developed,and its performance was compared with that of ordinary least squares(OLS)and geographically weighted regression(GWR)models.The results demonstrated that the GTWR model outperformed others in analyzing the relationship between rail transit ridership and the built environment.In addition,the coefficients of explanatory variables showed significant variation across spatiotemporal dimensions,revealing distinct patterns.Notably,the influence of commuter flows led to more pronounced temporal heterogeneity in the coefficients observed on weekdays.These findings offer valuable insights for optimizing urban public transportation systems and advancing integrated urban rail development.
基金supported by the National Natural Science Foundation of China(Nos.62201454 and 62306235)the Xi’an Science and Technology Program of Xi’an Science and Technology Bureau(No.23SFSF0004)。
文摘The unmanned aerial vehicle(UAV)images captured under low-light conditions are often suffering from noise and uneven illumination.To address these issues,we propose a low-light image enhancement algorithm for UAV images,which is inspired by the Retinex theory and guided by a light weighted map.Firstly,we propose a new network for reflectance component processing to suppress the noise in images.Secondly,we construct an illumination enhancement module that uses a light weighted map to guide the enhancement process.Finally,the processed reflectance and illumination components are recombined to obtain the enhancement results.Experimental results show that our method can suppress the noise in images while enhancing image brightness,and prevent over enhancement in bright regions.Code and data are available at https://gitee.com/baixiaotong2/uav-images.git.
基金Supported by the National Natural Science Foundation of China(12301101)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110019 and 2020A1515110585)。
文摘In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.
基金Supported by Natural Science Foundation of Guangdong Province in China(2018KTSCX161)。
文摘The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.
基金Supported by Sichuan Science and Technology Program (No.2022ZYD0010)。
文摘The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.
基金Supported by NSFC(Nos.12371051,12141101,11871126)。
文摘In this paper,we study and characterize the volume estimates of geodesic balls on Finsler gradient Ricci solitons.We get the upper bounds on the volumes of geodesic balls of all three kinds of Finsler gradient Ricci solitons under certain condition about the Laplacian of thedistance function.
基金supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University(Grant Nos.215/20506277,215/20506341)。
文摘The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.
基金supported by the National Social Science Fundation(Grant No.21BTJ040)the Project of Outstanding Young People in University of Anhui Province(Grant Nos.2023AH020037,SLXY2024A001).
文摘In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.
基金supported by the funding provided by the State Key Laboratory of Hydraulics and Mountain River Engineering(SKHL2210)National Natural Science Foundation of China(42171304)+1 种基金the Sichuan Science and Technology Program(2023YFS0380)Natural Science Foundation of Jiangsu Province of China(BK20242018)。
文摘The Yellow River Basin in Sichuan Province(YRS)is undergoing severe soil erosion and exacerbated ecological vulnerability,which collectively pose formidable challenges for regional water conservation(WC)and sustainable development.While effectively enhancing WC necessitates a comprehensive understanding of its driving factors and corresponding intervention strategies,existing studies have largely neglected the spatiotemporal heterogeneity of both natural and socio-economic drivers.Therefore,this study explored the spatiotemporal heterogeneity of WC drivers in YRS using multi-scale geographically weighted regression(MGWR)and geographically and temporally weighted regression(GTWR)models from an eco-hydrological perspective.We discovered that downstream regions,which are more developed,achieved significantly better WC than upstream regions.The results also demonstrated that the influence of temperature and wind speed is consistently dominant and temporally stable due to climate stability,while the influence of vegetation shifted from negative to positive around 2010,likely indicating greater benefits from understory vegetation.Economic growth positively impacted WC in upstream regions but had a negative effect in the more developed downstream regions.These findings highlight the importance of targeted water conservation strategies,including locally appropriate revegetation,optimization of agricultural and economic structures,and the establishment of eco-compensation mechanisms for ecological conservation and sustainable development.
文摘Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).
基金supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02)Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Changes,Faculty of Geography,Yunnan Normal University(PGPEC2304)China Scholarship Council。
文摘Sloping farmland,particularly in mountainous and hilly areas,constitutes a significant component of regional farmland resources.An investigation into the spatio-temporal pattern of sloping farmland and its influencing factors in China is imperative for the efficient utilization of farmland and the optimization of land space.We used land use transfer matrix,geographically weighted regression model and geographical detector to conduct this study.Results showed that sloping farmland in China firstly decreased and then increased from 2000 to 2020.The proportion of sloping farmland decreased radially outward from Sichuan basin to the surrounding areas.Change rates of sloping farmland with different slopes varied and the slope with 6°-15°underwent the fastest changes.The influencing factors of farmland at various slope degrees were different.For sloping farmland below 15°,land use intensity and elevation had the greatest contribution.For sloping farmland between 15°and 25°,elevation,land use intensity,and population density were the main influencing factors.Sloping farmland above 25°was mostly affected by natural factors.This study can provide scientific basis for rational development and protection of sloping farmland.
文摘BACKGROUND Advanced esophageal squamous cell carcinoma(ESCC)has an extremely poor prognosis.Preoperative chemoradiotherapy(CRT)can significantly prolong survival,especially in those who achieve pathological complete response(pCR).However,the pretherapeutic prediction of pCR remains challenging.AIM To predict pCR and survival in ESCC patients undergoing CRT using an artificial intelligence(AI)-based diffusion-weighted magnetic resonance imaging(DWI-MRI)radiomics model.METHODS We retrospectively analyzed 70 patients with ESCC who underwent curative surgery following CRT.For each patient,pre-treatment tumors were semi-automatically segmented in three dimensions from DWI-MRI images(b=0,1000 second/mm^(2)),and a total of 76 radiomics features were extracted from each segmented tumor.Using these features as explanatory variables and pCR as the objective variable,machine learning models for predicting pCR were developed using AutoGluon,an automated machine learning library,and validated by stratified double cross-validation.RESULTS pCR was achieved in 15 patients(21.4%).Apparent diffusion coefficient skewness demonstrated the highest predictive performance[area under the curve(AUC)=0.77].Gray-level co-occurrence matrix(GLCM)entropy(b=1000 second/mm²)was an independent prognostic factor for relapse-free survival(RFS)(hazard ratio=0.32,P=0.009).In Kaplan-Meier analysis,patients with high GLCM entropy showed significantly better RFS(P<0.001,log-rank).The best-performing machine learning model achieved an AUC of 0.85.The predicted pCR-positive group showed significantly better RFS than the predicted pCR-negative group(P=0.007,log-rank).CONCLUSION AI-based radiomics analysis of DWI-MRI images in ESCC has the potential to accurately predict the effect of CRT before treatment and contribute to constructing optimal treatment strategies.
基金Supported by the Natural Science Foundation of Xiamen(Grant No.3502Z20227184)the Natural Science Foundation of Fujian Province(Grant No.2022J01034)+2 种基金the Natural Science Foundation of Shanghai(Grant No.23ZR1435100)the National Natural Science Foundation of China(Grant Nos.12271448 and 12301054)the Fundamental Research Funds for Central Universities of China(Grant No.20720220043)。
文摘We investigate the incidence algebras arising from one-branch extensions of“rectangles”.There are four different ways to form such extensions,and all four kinds of incidence algebras turn out to be derived equivalent.We provide realizations for all of them as endomorphism algebra of tilting modules or tilting complexes over a Nakayama algebra.Meanwhile,an unexpected derived equivalence between Nakayama algebras N(2r-1,r)and N(2r-1,r+1)has been found.As an application,we obtain the explicit formulas of the Coxeter polynomials for a large family of Nakayama algebras,i.e.,the Nakayama algebras N(n,r)with n/2<r<n.
基金co-supported by the National Natural Science Foundation of China(Nos.12302252 and 12472189)the Research Program of National University of Defense Technology,China(No.ZK24-31).
文摘Vision-based relative pose estimation plays a pivotal role in various space missions.Deep learning enhances monocular spacecraft pose estimation,but high computational demands necessitate model simplification for onboard systems.In this paper,we aim to achieve an optimal balance between accuracy and computational efficiency.We present a Perspective-n-Point(PnP)based method for spacecraft pose estimation,leveraging lightweight neural networks to localize semantic keypoints and reduce computational load.Since the accuracy of keypoint localization is closely related to the heatmap resolution,we devise an efficient upsampling module to increase the resolution of heatmaps with minimal overhead.Furthermore,the heatmaps predicted by the lightweight models tend to show high-level noise.To tackle this issue,we propose a weighting strategy by analyzing the statistical characteristics of predicted semantic keypoints and substantially improve the pose estimation accuracy.The experiments carried out on the SPEED dataset underscore the prospect of our method in engineering applications.We dramatically reduce the model parameters to 0.7 M,merely 2.5%of that required by the top-performing method,and achieve lower pose estimation error and better real-time performance.
基金the Special Research Fund for the Natural Science Foundation of Chongqing(No.cstc2019jcyjmsxm1351)the Science and Technology Research Project of Chongqing Education Commission(No.KJQN2020006300)。
文摘There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep scenes.In order to recreate the intestinal wall in two dimensions,a method is developed.The normalized Laplacian algorithm is used to enhance the image and transform it into polar coordinates according to the characteristics that intestinal images are not obvious and usually arranged in a circle,in order to extract the new image segments of the current image relative to the previous image.The improved weighted fusion algorithm is then used to sequentially splice the segment images.The experimental results demonstrate that the suggested approach can improve image clarity and minimize noise while maintaining the information content of intestinal images.In addition,the method's seamless transition between the final portions of a panoramic image also demonstrates that the stitching trace has been removed.
文摘Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.
基金Programs for Science and Technology Development of Henan Province,grant number 242102210152The Fundamental Research Funds for the Universities of Henan Province,grant number NSFRF240620+1 种基金Key Scientific Research Project of Henan Higher Education Institutions,grant number 24A520015Henan Key Laboratory of Network Cryptography Technology,grant number LNCT2022-A11.
文摘Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights delegation.By introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced greatly.At the same time,a weighted tree structure is constructed to simplify the expression of access structure effectively.With conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal costs.The scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources.