Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors...Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors propose a drive-by approach that takes advantage from bogie vertical accelerations to assess bridge health status.To do so,continuous wavelet transform is combined with multiple sparse autoencoders that allow for damage detection and localization across bridge span.According to authors’best knowledge,this is the first case in which an unsupervised technique,which relies on the use of sparse autoencoders,is used to localize damages.The bridge considered in this work is a Warren steel truss bridge,whose finite element model is referred to an actual structure,belonging to the Italian railway line.To investigate damage detection and localization performances,different operational variables are accounted for:train weight,forward speed and track irregularity evolution in time.Two configurations for the virtual measuring channels were investigated:as a result,better performances were obtained by exploiting the vertical accelerations of both the bogies of the leading coach instead of using only one single acceleration signal.展开更多
Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,...Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,a novel fault diagnostic method is developed for both diagnostics and detection of novelties.To this end,a sparse autoencoder-based multi-head Deep Neural Network(DNN)is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data.The detection of novelties is based on the reconstruction error.Moreover,the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function,instead of performing the pre-training and fine-tuning phases required for classical DNNs.The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer.The results show that its performance is satisfactory both in detection of novelties and fault diagnosis,outperforming other state-of-the-art methods.This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect,but also detect unknown types of defects.展开更多
(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic s...(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic smart diagnosis.(Method)This study aims to propose a novel deep learning method that can obtain better performance.We use the pseudo-Zernike moment(PZM),derived from Zernike moment,as the extracted features.Two settings are introducing:(i)image plane over unit circle;and(ii)image plane inside the unit circle.Afterward,we use a deep-stacked sparse autoencoder(DSSAE)as the classifier.Besides,multiple-way data augmentation is chosen to overcome overfitting.The multiple-way data augmentation is based on Gaussian noise,salt-and-pepper noise,speckle noise,horizontal and vertical shear,rotation,Gamma correction,random translation and scaling.(Results)10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06%±1.54%,a specificity of 92.56%±1.06%,a precision of 92.53%±1.03%,and an accuracy of 92.31%±1.08%.Its F1 score,MCC,and FMI arrive at 92.29%±1.10%,84.64%±2.15%,and 92.29%±1.10%,respectively.The AUC of our model is 0.9576.(Conclusion)We demonstrate“image plane over unit circle”can get better results than“image plane inside a unit circle.”Besides,this proposed PZM-DSSAE model is better than eight state-of-the-art approaches.展开更多
For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper featu...For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper feature selection methodologies typically require extensive model training and evaluation,which cannot deliver desired outcomes within a reasonable computing time.In this paper,an innovative wrapper approach termed Contribution Tracking Feature Selection(CTFS)is proposed for feature selection of large-scale data,which can locate informative features without population-level evolution.In other words,fewer evaluations are needed for CTFS compared to other evolutionary methods.We initially introduce a refined sparse autoencoder to assess the prominence of each feature in the subsequent wrapper method.Subsequently,we utilize an enhanced wrapper feature selection technique that merges Mutual Information(MI)with individual feature contributions.Finally,a fine-tuning contribution tracking mechanism discerns informative features within the optimal feature subset,operating via a dominance accumulation mechanism.Experimental results for multiple classification performance metrics demonstrate that the proposed method effectively yields smaller feature subsets without degrading classification performance in an acceptable runtime compared to state-of-the-art algorithms across most large-scale benchmark datasets.展开更多
Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels...Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims to define a confidence boundary by using(healthy) measurements evaluated on the rail constituting a baseline. The second step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed procedure is based on a machine learning methodology and includes the following stages:(1) data collection,(2) damage-sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder(SAE),(3) data fusion based on the Mahalanobis distance, and(4) unsupervised feature classification by implementing outlier and cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. Then, the trained SAE is capable to reconstruct test responses(not trained) allowing to compute the accumulative difference between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two most common types of OOR in railway wheels.展开更多
Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. Howe...Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. However, due to the traditional ELM shallow architecture, it requires a large number of hidden nodes when dealing with high-dimensional data sets to ensure its classification performance. The other aspect, it is easy to degrade the classification performance in the face of noise interference from noisy data. To improve the above problem, this paper proposes a double pseudo-inverse extreme learning machine (DPELM) based on Sparse Denoising AutoEncoder (SDAE) namely, SDAE-DPELM. The algorithm can directly determine the input weight and output weight of the network by using the pseudo-inverse method. As a result, the algorithm only requires a few hidden layer nodes to produce superior classification results when classifying data. And its combination with SDAE can effectively improve the classification performance and noise resistance. Extensive numerical experiments show that the algorithm has high classification accuracy and good robustness when dealing with high-dimensional noisy data and high-dimensional noiseless data. Furthermore, applying such an algorithm to Miao character recognition substantiates its excellent performance, which further illustrates the practicability of the algorithm.展开更多
Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature space.However,the existing deep learningbased NE methods are time-consuming as they need to tra...Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature space.However,the existing deep learningbased NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters.A sparse deep autoencoder(called SPDNE)for dynamic NE is proposed,aiming to learn the network structures while preserving the node evolution with a low computational complexity.SPDNE tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic NE.Then,an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is proposed.The performance of SPDNE over three dynamical NE models(i.e.sparse architecture-based deep autoencoder method,DynGEM,and ElvDNE)is evaluated on three well-known benchmark networks and five real-world networks.The experimental results demonstrate that SPDNE can reduce about 70%of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE models.The results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms.展开更多
3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safe...3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images.展开更多
A high resolution range profile(HRRP) is a summation vector of the sub-echoes of the target scattering points acquired by a wide-band radar.Generally, HRRPs obtained in a noncooperative complex electromagnetic environ...A high resolution range profile(HRRP) is a summation vector of the sub-echoes of the target scattering points acquired by a wide-band radar.Generally, HRRPs obtained in a noncooperative complex electromagnetic environment are contaminated by strong noise.Effective pre-processing of the HRRP data can greatly improve the accuracy of target recognition.In this paper, a denoising and reconstruction method for HRRP is proposed based on a Modified Sparse Auto-Encoder, which is a representative non-linear model.To better reconstruct the HRRP, a sparse constraint is added to the proposed model and the sparse coefficient is calculated based on the intrinsic dimension of HRRP.The denoising of the HRRP is performed by adding random noise to the input HRRP data during the training process and fine-tuning the weight matrix through singular-value decomposition.The results of simulations showed that the proposed method can both reconstruct the signal with fidelity and suppress noise effectively, significantly outperforming other methods, especially in low Signal-to-Noise Ratio conditions.展开更多
Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic pro...Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic procedures’performance and forecast accuracy.The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups.In light of research investigations,it is vital to consider age as one of the key criteria when choosing the subjects.The younger subjects are more susceptible to the perishable side than the older onset.The proposed investigation concentrated on the younger onset.The research used deep learning models and neuroimages to diagnose and categorize the disease at its early stages automatically.The proposed work is executed in three steps.The 3D input images must first undergo image pre-processing using Weiner filtering and Contrast Limited Adaptive Histogram Equalization(CLAHE)methods.The Transfer Learning(TL)models extract features,which are subsequently compressed using cascaded Auto Encoders(AE).The final phase entails using a Deep Neural Network(DNN)to classify the phases of AD.The model was trained and tested to classify the five stages of AD.The ensemble ResNet-18 and sparse autoencoder with DNN model achieved an accuracy of 98.54%.The method is compared to state-of-the-art approaches to validate its efficacy and performance.展开更多
Multipath signal recognition is crucial to the ability to provide high-precision absolute-position services by the BeiDou Navigation Satellite System(BDS).However,most existing approaches to this issue involve supervi...Multipath signal recognition is crucial to the ability to provide high-precision absolute-position services by the BeiDou Navigation Satellite System(BDS).However,most existing approaches to this issue involve supervised machine learning(ML)methods,and it is difficult to move to unsupervised multipath signal recognition because of the limitations in signal labeling.Inspired by an autoencoder with powerful unsupervised feature extraction,we propose a new deep learning(DL)model for BDS signal recognition that places a long short-term memory(LSTM)module in series with a convolutional sparse autoencoder to create a new autoencoder structure.First,we propose to capture the temporal correlations in long-duration BeiDou satellite time-series signals by using the LSTM module to mine the temporal change patterns in the time series.Second,we develop a convolutional sparse autoencoder method that learns a compressed representation of the input data,which then enables downscaled and unsupervised feature extraction from long-duration BeiDou satellite series signals.Finally,we add an l_(1/2) regularizer to the objective function of our DL model to remove redundant neurons from the neural network while ensuring recognition accuracy.We tested our proposed approach on a real urban canyon dataset,and the results demonstrated that our algorithm could achieve better classification performance than two ML-based methods(e.g.,11%better than a support vector machine)and two existing DL-based methods(e.g.,7.26%better than convolutional neural networks).展开更多
The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is...The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.展开更多
Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted ...Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted intelligent condition monitoring method is proposed in this paper.Through analyzing the weakness of convex sparse model,i.e.the tradeoff between noise reduction and feature reconstruction,this paper proposes an enhanced-sparsity nonconvex regularized convex model based on Moreau envelope to achieve weak feature extraction.Accordingly,a sparsity-assisted deep convolutional variational autoencoders network is proposed,which achieves the intelligent identification of fault state through training denoised normal data.Finally,the effectiveness of the proposed method is verified through aero-engine bearing run-to-failure experiment.The comparison results show that the proposed method is good at abnormal pattern recognition,showing a good potential for weak fault intelligent diagnosis of aero-engine main shaft bearings.展开更多
We propose a novel filter for sparse big data,called an integrated autoencoder(IAE),which utilises auxiliary information to mitigate data sparsity.The proposed model achieves an appropriate balance between prediction ...We propose a novel filter for sparse big data,called an integrated autoencoder(IAE),which utilises auxiliary information to mitigate data sparsity.The proposed model achieves an appropriate balance between prediction accuracy,convergence speed,and complexity.We implement experiments on a GPS trajectory dataset,and the results demonstrate that the IAE is more accurate and robust than some state-of-the-art methods.展开更多
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim...为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。展开更多
文摘Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors propose a drive-by approach that takes advantage from bogie vertical accelerations to assess bridge health status.To do so,continuous wavelet transform is combined with multiple sparse autoencoders that allow for damage detection and localization across bridge span.According to authors’best knowledge,this is the first case in which an unsupervised technique,which relies on the use of sparse autoencoders,is used to localize damages.The bridge considered in this work is a Warren steel truss bridge,whose finite element model is referred to an actual structure,belonging to the Italian railway line.To investigate damage detection and localization performances,different operational variables are accounted for:train weight,forward speed and track irregularity evolution in time.Two configurations for the virtual measuring channels were investigated:as a result,better performances were obtained by exploiting the vertical accelerations of both the bogies of the leading coach instead of using only one single acceleration signal.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005103,71801046,51775112,51975121)Guangdong Province Basic and Applied Basic Research Foundation of China(Grant No.2019B1515120095)+1 种基金Intelligent Manufacturing PHM Innovation Team Program(Grant Nos.2018KCXTD029,TDYB2019010)MoST International Cooperation Program(6-14).
文摘Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,a novel fault diagnostic method is developed for both diagnostics and detection of novelties.To this end,a sparse autoencoder-based multi-head Deep Neural Network(DNN)is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data.The detection of novelties is based on the reconstruction error.Moreover,the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function,instead of performing the pre-training and fine-tuning phases required for classical DNNs.The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer.The results show that its performance is satisfactory both in detection of novelties and fault diagnosis,outperforming other state-of-the-art methods.This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect,but also detect unknown types of defects.
基金This study was supported by Royal Society International Exchanges Cost Share Award,UK(RP202G0230)Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)+1 种基金Hope Foundation for Cancer Research,UK(RM60G0680)Global Challenges Research Fund(GCRF),UK(P202PF11)。
文摘(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic smart diagnosis.(Method)This study aims to propose a novel deep learning method that can obtain better performance.We use the pseudo-Zernike moment(PZM),derived from Zernike moment,as the extracted features.Two settings are introducing:(i)image plane over unit circle;and(ii)image plane inside the unit circle.Afterward,we use a deep-stacked sparse autoencoder(DSSAE)as the classifier.Besides,multiple-way data augmentation is chosen to overcome overfitting.The multiple-way data augmentation is based on Gaussian noise,salt-and-pepper noise,speckle noise,horizontal and vertical shear,rotation,Gamma correction,random translation and scaling.(Results)10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06%±1.54%,a specificity of 92.56%±1.06%,a precision of 92.53%±1.03%,and an accuracy of 92.31%±1.08%.Its F1 score,MCC,and FMI arrive at 92.29%±1.10%,84.64%±2.15%,and 92.29%±1.10%,respectively.The AUC of our model is 0.9576.(Conclusion)We demonstrate“image plane over unit circle”can get better results than“image plane inside a unit circle.”Besides,this proposed PZM-DSSAE model is better than eight state-of-the-art approaches.
基金supported in part by the National Key Research and Development Program of China under Grant(No.2021YFB3300900)the NSFC Key Supported Project of the Major Research Plan under Grant(No.92267206)+2 种基金the National Natural Science Foundation of China under Grant(Nos.72201052,62032013,62173076)the Fundamental Research Funds for the Central Universities under Grant(No.N2204017)the Fundamental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries under Grant(No.2013ZCX11).
文摘For data mining tasks on large-scale data,feature selection is a pivotal stage that plays an important role in removing redundant or irrelevant features while improving classifier performance.Traditional wrapper feature selection methodologies typically require extensive model training and evaluation,which cannot deliver desired outcomes within a reasonable computing time.In this paper,an innovative wrapper approach termed Contribution Tracking Feature Selection(CTFS)is proposed for feature selection of large-scale data,which can locate informative features without population-level evolution.In other words,fewer evaluations are needed for CTFS compared to other evolutionary methods.We initially introduce a refined sparse autoencoder to assess the prominence of each feature in the subsequent wrapper method.Subsequently,we utilize an enhanced wrapper feature selection technique that merges Mutual Information(MI)with individual feature contributions.Finally,a fine-tuning contribution tracking mechanism discerns informative features within the optimal feature subset,operating via a dominance accumulation mechanism.Experimental results for multiple classification performance metrics demonstrate that the proposed method effectively yields smaller feature subsets without degrading classification performance in an acceptable runtime compared to state-of-the-art algorithms across most large-scale benchmark datasets.
基金a result of project WAY4SafeRail—Wayside monitoring system FOR SAFE RAIL transportation, with reference NORTE-01-0247-FEDER-069595co-funded by the European Regional Development Fund (ERDF), through the North Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement+3 种基金financially supported by Base Funding-UIDB/04708/2020Programmatic Funding-UIDP/04708/2020 of the CONSTRUCT—Instituto de Estruturas e Constru??esfunded by national funds through the FCT/ MCTES (PIDDAC)Grant No. 2021.04272. CEECIND from the Stimulus of Scientific Employment, Individual Support (CEECIND) - 4th Edition provided by “FCT – Funda??o para a Ciência, DOI : https:// doi. org/ 10. 54499/ 2021. 04272. CEECI ND/ CP1679/ CT0003”。
文摘Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims to define a confidence boundary by using(healthy) measurements evaluated on the rail constituting a baseline. The second step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed procedure is based on a machine learning methodology and includes the following stages:(1) data collection,(2) damage-sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder(SAE),(3) data fusion based on the Mahalanobis distance, and(4) unsupervised feature classification by implementing outlier and cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. Then, the trained SAE is capable to reconstruct test responses(not trained) allowing to compute the accumulative difference between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two most common types of OOR in railway wheels.
文摘Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. However, due to the traditional ELM shallow architecture, it requires a large number of hidden nodes when dealing with high-dimensional data sets to ensure its classification performance. The other aspect, it is easy to degrade the classification performance in the face of noise interference from noisy data. To improve the above problem, this paper proposes a double pseudo-inverse extreme learning machine (DPELM) based on Sparse Denoising AutoEncoder (SDAE) namely, SDAE-DPELM. The algorithm can directly determine the input weight and output weight of the network by using the pseudo-inverse method. As a result, the algorithm only requires a few hidden layer nodes to produce superior classification results when classifying data. And its combination with SDAE can effectively improve the classification performance and noise resistance. Extensive numerical experiments show that the algorithm has high classification accuracy and good robustness when dealing with high-dimensional noisy data and high-dimensional noiseless data. Furthermore, applying such an algorithm to Miao character recognition substantiates its excellent performance, which further illustrates the practicability of the algorithm.
基金National Natural Science Foundation of China,Grant/Award Numbers:62173236,61876110,61806130,61976142,82304204.
文摘Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature space.However,the existing deep learningbased NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters.A sparse deep autoencoder(called SPDNE)for dynamic NE is proposed,aiming to learn the network structures while preserving the node evolution with a low computational complexity.SPDNE tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic NE.Then,an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is proposed.The performance of SPDNE over three dynamical NE models(i.e.sparse architecture-based deep autoencoder method,DynGEM,and ElvDNE)is evaluated on three well-known benchmark networks and five real-world networks.The experimental results demonstrate that SPDNE can reduce about 70%of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE models.The results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images.
基金co-supported by the National Natural Science Foundation of China(Nos.61671463,61471379,61790551 and 61102166)。
文摘A high resolution range profile(HRRP) is a summation vector of the sub-echoes of the target scattering points acquired by a wide-band radar.Generally, HRRPs obtained in a noncooperative complex electromagnetic environment are contaminated by strong noise.Effective pre-processing of the HRRP data can greatly improve the accuracy of target recognition.In this paper, a denoising and reconstruction method for HRRP is proposed based on a Modified Sparse Auto-Encoder, which is a representative non-linear model.To better reconstruct the HRRP, a sparse constraint is added to the proposed model and the sparse coefficient is calculated based on the intrinsic dimension of HRRP.The denoising of the HRRP is performed by adding random noise to the input HRRP data during the training process and fine-tuning the weight matrix through singular-value decomposition.The results of simulations showed that the proposed method can both reconstruct the signal with fidelity and suppress noise effectively, significantly outperforming other methods, especially in low Signal-to-Noise Ratio conditions.
文摘Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic procedures’performance and forecast accuracy.The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups.In light of research investigations,it is vital to consider age as one of the key criteria when choosing the subjects.The younger subjects are more susceptible to the perishable side than the older onset.The proposed investigation concentrated on the younger onset.The research used deep learning models and neuroimages to diagnose and categorize the disease at its early stages automatically.The proposed work is executed in three steps.The 3D input images must first undergo image pre-processing using Weiner filtering and Contrast Limited Adaptive Histogram Equalization(CLAHE)methods.The Transfer Learning(TL)models extract features,which are subsequently compressed using cascaded Auto Encoders(AE).The final phase entails using a Deep Neural Network(DNN)to classify the phases of AD.The model was trained and tested to classify the five stages of AD.The ensemble ResNet-18 and sparse autoencoder with DNN model achieved an accuracy of 98.54%.The method is compared to state-of-the-art approaches to validate its efficacy and performance.
基金supported in part by the National Natural Science Foundations of China(Nos.62273106,62203122,62320106008,62373114,62203123,and 62073086)in part by Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515011480 and 2023A1515011159)in part by China Postdoctoral Science Foundation funded project(No.2022M720840).
文摘Multipath signal recognition is crucial to the ability to provide high-precision absolute-position services by the BeiDou Navigation Satellite System(BDS).However,most existing approaches to this issue involve supervised machine learning(ML)methods,and it is difficult to move to unsupervised multipath signal recognition because of the limitations in signal labeling.Inspired by an autoencoder with powerful unsupervised feature extraction,we propose a new deep learning(DL)model for BDS signal recognition that places a long short-term memory(LSTM)module in series with a convolutional sparse autoencoder to create a new autoencoder structure.First,we propose to capture the temporal correlations in long-duration BeiDou satellite time-series signals by using the LSTM module to mine the temporal change patterns in the time series.Second,we develop a convolutional sparse autoencoder method that learns a compressed representation of the input data,which then enables downscaled and unsupervised feature extraction from long-duration BeiDou satellite series signals.Finally,we add an l_(1/2) regularizer to the objective function of our DL model to remove redundant neurons from the neural network while ensuring recognition accuracy.We tested our proposed approach on a real urban canyon dataset,and the results demonstrated that our algorithm could achieve better classification performance than two ML-based methods(e.g.,11%better than a support vector machine)and two existing DL-based methods(e.g.,7.26%better than convolutional neural networks).
基金Project supported by the National Basic Research Program (973) of China (No. 61331903) and the National Natural Science Foundation of China (Nos. 61175008 and 61673265)
文摘The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.
基金the National Natural Science Foundations of China(Nos.91860125,51705398)the National Key Basic Research Program of China(No.2015CB057400)the Shaanxi Province 2020 Natural Science Basic Research Plan(No.2020JQ-042).
文摘Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted intelligent condition monitoring method is proposed in this paper.Through analyzing the weakness of convex sparse model,i.e.the tradeoff between noise reduction and feature reconstruction,this paper proposes an enhanced-sparsity nonconvex regularized convex model based on Moreau envelope to achieve weak feature extraction.Accordingly,a sparsity-assisted deep convolutional variational autoencoders network is proposed,which achieves the intelligent identification of fault state through training denoised normal data.Finally,the effectiveness of the proposed method is verified through aero-engine bearing run-to-failure experiment.The comparison results show that the proposed method is good at abnormal pattern recognition,showing a good potential for weak fault intelligent diagnosis of aero-engine main shaft bearings.
基金supported by the National Social Science Foundation of China[No.16FJY008]the National Planning Office of Philosophy and Social Science[No.11801060]the Natural Science Foundation of Shandong Province[No.ZR2016FM26].
文摘We propose a novel filter for sparse big data,called an integrated autoencoder(IAE),which utilises auxiliary information to mitigate data sparsity.The proposed model achieves an appropriate balance between prediction accuracy,convergence speed,and complexity.We implement experiments on a GPS trajectory dataset,and the results demonstrate that the IAE is more accurate and robust than some state-of-the-art methods.
文摘在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹聚类方法。首先通过采用两阶段无监督策略微调的改进堆叠稀疏自编码器(stacked sparse autoencoder,SSAE),对快速傅里叶变换后的归一化频域数据提取电抗器原始声纹32维深度特征。进一步提出了依据最近邻聚类有效性指标(clustering validation index based on nearest neighbors,CVNN)的自适应K-means++聚类算法,构建了能自适应确定最优聚类个数的电抗器声纹聚类模型。最后通过西北地区某750 kV电抗器实测声纹数据集进行了验证。结果表明,DAKCA算法对无标签声纹数据在不同样本均衡程度下能够稳定提取32维深度特征,并实现最优聚类,为直接高效利用电抗器无标签声纹数据提供了参考。
文摘为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。