Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Le...Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Lebesgue space which has vanishing moments up to order s plays an important role,where s∈N.展开更多
In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequen...In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.展开更多
The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu...The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.展开更多
The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(...The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.展开更多
The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the...The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.展开更多
The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show...The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data.展开更多
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl...Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.展开更多
In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergen...In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.展开更多
Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as ini...Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as initialization sensitivity and information granule weight optimization.Therefore,we propose a weighted kernel fuzzy clustering algorithm based on a relative density view(RDVWKFC).Compared with the traditional density-based methods,RDVWKFC can capture the intrinsic structure of the data more accurately,thus improving the initial quality of the clustering.By introducing a Relative Density based Knowledge Extraction Method(RDKM)and adaptive weight optimization mechanism,we effectively solve the limitations of view initialization and information granule weight optimization.RDKM can accurately identify high-density regions and optimize the initialization process.The adaptive weight mechanism can reduce noise and outliers’interference in the initial cluster centre selection by dynamically allocating weights.Experimental results on 14 benchmark datasets show that the proposed algorithm is superior to the existing algorithms in terms of clustering accuracy,stability,and convergence speed.It shows adaptability and robustness,especially when dealing with different data distributions and noise interference.Moreover,RDVWKFC can also show significant advantages when dealing with data with complex structures and high-dimensional features.These advancements provide versatile tools for real-world applications such as bioinformatics,image segmentation,and anomaly detection.展开更多
Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribu...Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights delegation.By introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced greatly.At the same time,a weighted tree structure is constructed to simplify the expression of access structure effectively.With conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal costs.The scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources.展开更多
In the article,we provide a sharp lower bound for the weighted Lehmer mean of the complete p-elliptic integrals of the first and second kinds,which is the extension of the previous results for complete p-elliptic inte...In the article,we provide a sharp lower bound for the weighted Lehmer mean of the complete p-elliptic integrals of the first and second kinds,which is the extension of the previous results for complete p-elliptic integrals.展开更多
In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which ...In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which is a class of radial weights satisfying the two-sided doubling conditions.As an application,the bounded and compact positive Toeplitz operators T_(μ,ω)on the endpoint case weighted harmonic Bergman space L_(h,ω)^(1)(D)are characterized.展开更多
In this paper,we consider the Hopf lemma of the following mixed local and nonlocal weighted semilinear elliptic equations{-div(|x|^(-2α)■u)+(-△)_(α)^(s)u=0,x∈U,u(x^(^))=-u(x),x∈H,u(x)=0,x∈R^(N)\U,where H belong...In this paper,we consider the Hopf lemma of the following mixed local and nonlocal weighted semilinear elliptic equations{-div(|x|^(-2α)■u)+(-△)_(α)^(s)u=0,x∈U,u(x^(^))=-u(x),x∈H,u(x)=0,x∈R^(N)\U,where H belong to R^(N)with 0∈H is an open and affine half space,U belong to H is an open and bounded set,s∈(0,1),α∈[0,N-2s/2),(-△)_(α)^(s)is weighted fractional Laplacian with a weighted function.展开更多
A pseudo-cone in ℝ^(n) is a nonempty closed convex set K not containing the origin and such thatλK⊆K for allλ≥1.It is called a C-pseudo-cone if C is its recession cone,where C is a pointed closed convex cone with i...A pseudo-cone in ℝ^(n) is a nonempty closed convex set K not containing the origin and such thatλK⊆K for allλ≥1.It is called a C-pseudo-cone if C is its recession cone,where C is a pointed closed convex cone with interior points.The cone-volume measure of a pseudo-cone can be defined similarly as for convex bodies,but it may be infinite.After proving a necessary condition for cone-volume measures of C-pseudo-cones,we introduce suitable weights for cone-volume measures,yielding finite measures.Then we provide a necessary and sufficient condition for a Borel measure on the unit sphere to be the weighted cone-volume measure of some C-pseudo-cone.展开更多
Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_...Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).展开更多
In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditio...In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.展开更多
Cultural landscape zoning research of traditional villages is the basic premise for carrying out overall protection and regional development.Through the clustering algorithm,cultural area zoning research of traditiona...Cultural landscape zoning research of traditional villages is the basic premise for carrying out overall protection and regional development.Through the clustering algorithm,cultural area zoning research of traditional villages can provide objective basis for its overall protection and development.Based on the field research,drawing on the theory of cultural landscape,southwest Hubei is taken as the research object,and the index system of cultural landscape type division of traditional villages is constructed from three levels of culture,geography and village carrier.Adopting the multi-attribute weighted k-modes clustering algorithm,92 traditional villages in southwest Hubei are divided into three major types,which are the western Tujia cultural characteristic area,the southern Tujia-Miao cultural penetration area,and the northern multi-ethnic cultural mixed area,and the characteristics of each area are summarized.The regional characteristics of traditional villages in southwest Hubei at the cultural landscape level are analysed from a macro point of view,which provides a reference for more objective cognition of the distribution law of traditional villages in southwest Hubei,and carrying out the contiguous protection of traditional villages.展开更多
There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep ...There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep scenes.In order to recreate the intestinal wall in two dimensions,a method is developed.The normalized Laplacian algorithm is used to enhance the image and transform it into polar coordinates according to the characteristics that intestinal images are not obvious and usually arranged in a circle,in order to extract the new image segments of the current image relative to the previous image.The improved weighted fusion algorithm is then used to sequentially splice the segment images.The experimental results demonstrate that the suggested approach can improve image clarity and minimize noise while maintaining the information content of intestinal images.In addition,the method's seamless transition between the final portions of a panoramic image also demonstrates that the stitching trace has been removed.展开更多
Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data in...Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data into a series of time slices and independently reconstructs each time slice.However,when this strategy is employed,the potential correlations between two adjacent time slices are ignored,which degrades reconstruction performance.Therefore,this study proposes the use of a two-dimensional curvelet transform and the fast iterative shrinkage thresholding algorithm for data reconstruction.Based on the significant overlapping characteristics between the curvelet coefficient support sets of two adjacent time slices,a weighted operator is constructed in the curvelet domain using the prior support set provided by the previous reconstructed time slice to delineate the main energy distribution range,eff ectively providing prior information for reconstructing adjacent slices.Consequently,the resulting weighted fast iterative shrinkage thresholding algorithm can be used to reconstruct 3D seismic data.The processing of synthetic and field data shows that the proposed method has higher reconstruction accuracy and faster computational speed than the conventional fast iterative shrinkage thresholding algorithm for handling missing 3D seismic data.展开更多
Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification ...Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.展开更多
文摘Inhomogeneous Calderon-Zygmund operator T maps each atom into an approximate molecule of weighted local Hardy space if and only if some approximate cancellation condition holds for T.An equivalent norm for weighted Lebesgue space which has vanishing moments up to order s plays an important role,where s∈N.
基金Supported by the National Natural Science Foundation of China(12301101)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110019 and 2020A1515110585)。
文摘In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.
基金Supported by Natural Science Foundation of Guangdong Province in China(2018KTSCX161)。
文摘The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.
基金Supported by Sichuan Science and Technology Program (No.2022ZYD0010)。
文摘The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.
基金supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University(Grant Nos.215/20506277,215/20506341)。
文摘The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.
文摘The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data.
文摘Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.
基金supported by the National Social Science Fundation(Grant No.21BTJ040)the Project of Outstanding Young People in University of Anhui Province(Grant Nos.2023AH020037,SLXY2024A001).
文摘In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.
文摘Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as initialization sensitivity and information granule weight optimization.Therefore,we propose a weighted kernel fuzzy clustering algorithm based on a relative density view(RDVWKFC).Compared with the traditional density-based methods,RDVWKFC can capture the intrinsic structure of the data more accurately,thus improving the initial quality of the clustering.By introducing a Relative Density based Knowledge Extraction Method(RDKM)and adaptive weight optimization mechanism,we effectively solve the limitations of view initialization and information granule weight optimization.RDKM can accurately identify high-density regions and optimize the initialization process.The adaptive weight mechanism can reduce noise and outliers’interference in the initial cluster centre selection by dynamically allocating weights.Experimental results on 14 benchmark datasets show that the proposed algorithm is superior to the existing algorithms in terms of clustering accuracy,stability,and convergence speed.It shows adaptability and robustness,especially when dealing with different data distributions and noise interference.Moreover,RDVWKFC can also show significant advantages when dealing with data with complex structures and high-dimensional features.These advancements provide versatile tools for real-world applications such as bioinformatics,image segmentation,and anomaly detection.
基金Programs for Science and Technology Development of Henan Province,grant number 242102210152The Fundamental Research Funds for the Universities of Henan Province,grant number NSFRF240620+1 种基金Key Scientific Research Project of Henan Higher Education Institutions,grant number 24A520015Henan Key Laboratory of Network Cryptography Technology,grant number LNCT2022-A11.
文摘Conditional proxy re-encryption(CPRE)is an effective cryptographic primitive language that enhances the access control mechanism and makes the delegation of decryption permissions more granular,but most of the attribute-based conditional proxy re-encryption(AB-CPRE)schemes proposed so far do not take into account the importance of user attributes.A weighted attribute-based conditional proxy re-encryption(WAB-CPRE)scheme is thus designed to provide more precise decryption rights delegation.By introducing the concept of weight attributes,the quantity of system attributes managed by the server is reduced greatly.At the same time,a weighted tree structure is constructed to simplify the expression of access structure effectively.With conditional proxy re-encryption,large amounts of data and complex computations are outsourced to cloud servers,so the data owner(DO)can revoke the user’s decryption rights directly with minimal costs.The scheme proposed achieves security against chosen plaintext attacks(CPA).Experimental simulation results demonstrated that the decryption time is within 6–9 ms,and it has a significant reduction in communication and computation cost on the user side with better functionality compared to other related schemes,which enables users to access cloud data on devices with limited resources.
基金Supported by the National Natural Science Foundation of China(11971142)the Natural Science Foundation of Zhejiang Province(LY19A010012)the key Scientific Research Projects of Hunan Provincial Department of Education in 2021(21A0526)。
文摘In the article,we provide a sharp lower bound for the weighted Lehmer mean of the complete p-elliptic integrals of the first and second kinds,which is the extension of the previous results for complete p-elliptic integrals.
基金supported by the National Natural Science Foundation of China(12171075)the Science and Technology Research Project of Education Department of Jilin Province(JJKH20241406KJ)Zhan’s research was supported by the Doctoral Startup Fund of Liaoning University of Technology(XB2024029).
文摘In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which is a class of radial weights satisfying the two-sided doubling conditions.As an application,the bounded and compact positive Toeplitz operators T_(μ,ω)on the endpoint case weighted harmonic Bergman space L_(h,ω)^(1)(D)are characterized.
基金Supported by the National Natural Science Foundation of China(Grant No.12361026)Fundamental Research Funds for the Central Universities(Grant No.31920240069)Innovation Team Project of Northwest Minzu University.
文摘In this paper,we consider the Hopf lemma of the following mixed local and nonlocal weighted semilinear elliptic equations{-div(|x|^(-2α)■u)+(-△)_(α)^(s)u=0,x∈U,u(x^(^))=-u(x),x∈H,u(x)=0,x∈R^(N)\U,where H belong to R^(N)with 0∈H is an open and affine half space,U belong to H is an open and bounded set,s∈(0,1),α∈[0,N-2s/2),(-△)_(α)^(s)is weighted fractional Laplacian with a weighted function.
文摘A pseudo-cone in ℝ^(n) is a nonempty closed convex set K not containing the origin and such thatλK⊆K for allλ≥1.It is called a C-pseudo-cone if C is its recession cone,where C is a pointed closed convex cone with interior points.The cone-volume measure of a pseudo-cone can be defined similarly as for convex bodies,but it may be infinite.After proving a necessary condition for cone-volume measures of C-pseudo-cones,we introduce suitable weights for cone-volume measures,yielding finite measures.Then we provide a necessary and sufficient condition for a Borel measure on the unit sphere to be the weighted cone-volume measure of some C-pseudo-cone.
文摘Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).
基金supported by the National Natural Science Foundation of China(12171373)Chen's work also supported by the Fundamental Research Funds for the Central Universities of China(GK202207018).
文摘In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.
基金Philosophy and Social Sciences Research Project of Hubei Provincial Department of Education(22D057).
文摘Cultural landscape zoning research of traditional villages is the basic premise for carrying out overall protection and regional development.Through the clustering algorithm,cultural area zoning research of traditional villages can provide objective basis for its overall protection and development.Based on the field research,drawing on the theory of cultural landscape,southwest Hubei is taken as the research object,and the index system of cultural landscape type division of traditional villages is constructed from three levels of culture,geography and village carrier.Adopting the multi-attribute weighted k-modes clustering algorithm,92 traditional villages in southwest Hubei are divided into three major types,which are the western Tujia cultural characteristic area,the southern Tujia-Miao cultural penetration area,and the northern multi-ethnic cultural mixed area,and the characteristics of each area are summarized.The regional characteristics of traditional villages in southwest Hubei at the cultural landscape level are analysed from a macro point of view,which provides a reference for more objective cognition of the distribution law of traditional villages in southwest Hubei,and carrying out the contiguous protection of traditional villages.
基金the Special Research Fund for the Natural Science Foundation of Chongqing(No.cstc2019jcyjmsxm1351)the Science and Technology Research Project of Chongqing Education Commission(No.KJQN2020006300)。
文摘There is still a dearth of systematic study on picture stitching techniques for the natural tubular structures of intestines,and traditional stitching techniques have a poor application to endoscopic images with deep scenes.In order to recreate the intestinal wall in two dimensions,a method is developed.The normalized Laplacian algorithm is used to enhance the image and transform it into polar coordinates according to the characteristics that intestinal images are not obvious and usually arranged in a circle,in order to extract the new image segments of the current image relative to the previous image.The improved weighted fusion algorithm is then used to sequentially splice the segment images.The experimental results demonstrate that the suggested approach can improve image clarity and minimize noise while maintaining the information content of intestinal images.In addition,the method's seamless transition between the final portions of a panoramic image also demonstrates that the stitching trace has been removed.
基金National Natural Science Foundation of China under Grant 42304145Jiangxi Provincial Natural Science Foundation under Grant 20242BAB26051,20242BAB25191 and 20232BAB213077+1 种基金Foundation of National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing under Grant 2024QZ-TD-13Open Fund(FW0399-0002)of SINOPEC Key Laboratory of Geophysics。
文摘Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data into a series of time slices and independently reconstructs each time slice.However,when this strategy is employed,the potential correlations between two adjacent time slices are ignored,which degrades reconstruction performance.Therefore,this study proposes the use of a two-dimensional curvelet transform and the fast iterative shrinkage thresholding algorithm for data reconstruction.Based on the significant overlapping characteristics between the curvelet coefficient support sets of two adjacent time slices,a weighted operator is constructed in the curvelet domain using the prior support set provided by the previous reconstructed time slice to delineate the main energy distribution range,eff ectively providing prior information for reconstructing adjacent slices.Consequently,the resulting weighted fast iterative shrinkage thresholding algorithm can be used to reconstruct 3D seismic data.The processing of synthetic and field data shows that the proposed method has higher reconstruction accuracy and faster computational speed than the conventional fast iterative shrinkage thresholding algorithm for handling missing 3D seismic data.
基金Supported by National Key R&D Program of China(Grant No.2022YFB3404101)National Natural Science Foundation of China(Grant Nos.52375018,92148301)。
文摘Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.