This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 t...This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.展开更多
大部分相量测量算法将信号相量作为一个静态模型,因此对电网中经常发生的电压幅值和相角波动特别敏感。基于标准频率下动态相量模型的泰勒加权最小二乘法(Taylor Weighted Least Squares,TWLS)不仅提供了相量值,还提供了相量导数值,可...大部分相量测量算法将信号相量作为一个静态模型,因此对电网中经常发生的电压幅值和相角波动特别敏感。基于标准频率下动态相量模型的泰勒加权最小二乘法(Taylor Weighted Least Squares,TWLS)不仅提供了相量值,还提供了相量导数值,可以提高对电网动态状况的监测。在此基础上,提出了一种基于基波频率值的改进泰勒加权最小二乘法。首先用非线性最小二乘法得到基波频率值。然后介绍了基于测量基波频率值的改进泰勒加权最小二乘法推导过程,并对该算法所涉及的窗函数、数据窗长度和泰勒多项式阶数进行分析选择。最后采用不同的信号模型和实际数据来检验算法的性能。仿真结果表明:提出的改进泰勒加权最小二乘法的测量精度满足要求。展开更多
文摘This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.
文摘大部分相量测量算法将信号相量作为一个静态模型,因此对电网中经常发生的电压幅值和相角波动特别敏感。基于标准频率下动态相量模型的泰勒加权最小二乘法(Taylor Weighted Least Squares,TWLS)不仅提供了相量值,还提供了相量导数值,可以提高对电网动态状况的监测。在此基础上,提出了一种基于基波频率值的改进泰勒加权最小二乘法。首先用非线性最小二乘法得到基波频率值。然后介绍了基于测量基波频率值的改进泰勒加权最小二乘法推导过程,并对该算法所涉及的窗函数、数据窗长度和泰勒多项式阶数进行分析选择。最后采用不同的信号模型和实际数据来检验算法的性能。仿真结果表明:提出的改进泰勒加权最小二乘法的测量精度满足要求。