In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and ...In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.展开更多
基于数据驱动的单元测试代码自动化生成技术存在覆盖率低和可读性差的问题,难以应对日益增长的测试需求。大语言模型(LLM)在代码生成任务中显示了极大的潜力,然而由于代码数据的功能风格和编码风格的差异,LLM面临灾难性遗忘和资源受限这...基于数据驱动的单元测试代码自动化生成技术存在覆盖率低和可读性差的问题,难以应对日益增长的测试需求。大语言模型(LLM)在代码生成任务中显示了极大的潜力,然而由于代码数据的功能风格和编码风格的差异,LLM面临灾难性遗忘和资源受限这2个挑战。为了解决这些问题,提出将编码风格和功能风格同步迁移微调的思想,并开发一种高效的LLM微调训练方法用于单元测试用例生成。首先,利用广泛使用的指令数据集对LLM进行指令对齐,并按任务类型对指令集分类;同时,提取并存储具有任务特征的权重增量;其次,设计一个自适应风格提取模块,该模块包含抗噪声干扰学习和编码风格回溯学习,以应对不同的代码编写风格;最后,在目标域分别对功能风格增量和编码风格增量进行联合训练,以实现在目标域低资源情况下的高效适配和微调。在SF110 Corpus of Classes数据集上的测试用例生成实验结果表明,所提方法的结果均优于对比方法,与主流代码生成LLM Codex、Code Llama和DeepSeek-Coder相比,所提方法的编译率分别提高0.8%、43.5%和33.8%、分支覆盖率分别提高3.1%、1.0%和17.2%;行覆盖率分别提高4.1%、6.5%和15.5%,验证了所提方法在代码生成任务上的优越性。展开更多
针对循环神经网络(recurrent neural network,RNN)的结构不易确定、参数学习过程复杂等问题,提出一种增量构造式随机循环神经网络(incremental-construction for random RNN,IRRNN),实现了RNN结构的增量构造与参数的随机学习.首先建立...针对循环神经网络(recurrent neural network,RNN)的结构不易确定、参数学习过程复杂等问题,提出一种增量构造式随机循环神经网络(incremental-construction for random RNN,IRRNN),实现了RNN结构的增量构造与参数的随机学习.首先建立隐含节点增量构造的约束机制,同时利用候选节点池策略实现隐含节点的优选,避免了网络随机构造的盲目性;进一步,从模型参数的局部优化与全局优化两个角度考虑,提出模型参数的两种增量随机(incremental random,IR)学习方法,即IR-1与IR-2,并证明了其万能逼近特性;同时通过研究IRRNN的动态特性,分析了IRRNN的泛化性能.通过实验验证了IRRNN在动态特性、紧凑性和精度等多个方面具有良好特性.展开更多
随着电网公司代理购电业务稳步推进,代理购电业务体系逐步完善,精确的代理购电用户用电量预测为保障电力安全稳定供应奠定了基础。因此,文章构建自适应权重组合模型,将不同校核方法的校核结果进行权重分配,从而提升校核结果准确性。首先...随着电网公司代理购电业务稳步推进,代理购电业务体系逐步完善,精确的代理购电用户用电量预测为保障电力安全稳定供应奠定了基础。因此,文章构建自适应权重组合模型,将不同校核方法的校核结果进行权重分配,从而提升校核结果准确性。首先,构建预测业务偏差校核流程框架,确定代理购电预测业务校核流程。然后分别选取分位数映射法、增量变化法以及支持向量回归(support vector regression,SVR)对预测结果进行校核,得到同一纬度下的不同方法校核结果。最后,建立遗传算法-优劣解距离法(genetic algorithm-technique for order preference by similarity to ideal solution,GA-TOPSIS)模型针对校核结果进行准确性与稳定性双目标优化,选取不同校核方法的最优权重组合。测试结果表明在校核方法权重组合校正后,相较于初始预测值和单一校核方法校核后的结果,预测精度和准确度得到明显提升。展开更多
基金supported by the National Natural Science Foundation of China(6110420961503126)
文摘In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.
文摘基于数据驱动的单元测试代码自动化生成技术存在覆盖率低和可读性差的问题,难以应对日益增长的测试需求。大语言模型(LLM)在代码生成任务中显示了极大的潜力,然而由于代码数据的功能风格和编码风格的差异,LLM面临灾难性遗忘和资源受限这2个挑战。为了解决这些问题,提出将编码风格和功能风格同步迁移微调的思想,并开发一种高效的LLM微调训练方法用于单元测试用例生成。首先,利用广泛使用的指令数据集对LLM进行指令对齐,并按任务类型对指令集分类;同时,提取并存储具有任务特征的权重增量;其次,设计一个自适应风格提取模块,该模块包含抗噪声干扰学习和编码风格回溯学习,以应对不同的代码编写风格;最后,在目标域分别对功能风格增量和编码风格增量进行联合训练,以实现在目标域低资源情况下的高效适配和微调。在SF110 Corpus of Classes数据集上的测试用例生成实验结果表明,所提方法的结果均优于对比方法,与主流代码生成LLM Codex、Code Llama和DeepSeek-Coder相比,所提方法的编译率分别提高0.8%、43.5%和33.8%、分支覆盖率分别提高3.1%、1.0%和17.2%;行覆盖率分别提高4.1%、6.5%和15.5%,验证了所提方法在代码生成任务上的优越性。
文摘针对循环神经网络(recurrent neural network,RNN)的结构不易确定、参数学习过程复杂等问题,提出一种增量构造式随机循环神经网络(incremental-construction for random RNN,IRRNN),实现了RNN结构的增量构造与参数的随机学习.首先建立隐含节点增量构造的约束机制,同时利用候选节点池策略实现隐含节点的优选,避免了网络随机构造的盲目性;进一步,从模型参数的局部优化与全局优化两个角度考虑,提出模型参数的两种增量随机(incremental random,IR)学习方法,即IR-1与IR-2,并证明了其万能逼近特性;同时通过研究IRRNN的动态特性,分析了IRRNN的泛化性能.通过实验验证了IRRNN在动态特性、紧凑性和精度等多个方面具有良好特性.
文摘随着电网公司代理购电业务稳步推进,代理购电业务体系逐步完善,精确的代理购电用户用电量预测为保障电力安全稳定供应奠定了基础。因此,文章构建自适应权重组合模型,将不同校核方法的校核结果进行权重分配,从而提升校核结果准确性。首先,构建预测业务偏差校核流程框架,确定代理购电预测业务校核流程。然后分别选取分位数映射法、增量变化法以及支持向量回归(support vector regression,SVR)对预测结果进行校核,得到同一纬度下的不同方法校核结果。最后,建立遗传算法-优劣解距离法(genetic algorithm-technique for order preference by similarity to ideal solution,GA-TOPSIS)模型针对校核结果进行准确性与稳定性双目标优化,选取不同校核方法的最优权重组合。测试结果表明在校核方法权重组合校正后,相较于初始预测值和单一校核方法校核后的结果,预测精度和准确度得到明显提升。