Information feedback strategies can influence the traffic efficiency of intelligent traffic systems greatly.Based on the more practical symmetrical two-route scenario with one entrance and one exit,an improved weighte...Information feedback strategies can influence the traffic efficiency of intelligent traffic systems greatly.Based on the more practical symmetrical two-route scenario with one entrance and one exit,an improved weighted mean velocity feedback strategy(WMVFS) is proposed,which is not sensitive to the precision of global position system(GPS) devices.The applicability of WMVFS to different weight factors,aggressive probabilities,densities of dynamic vehicles,and different two-route scenarios(symmetrical scenario and asymmetrical scenario with a speed limit bottleneck) is analyzed.Results show that WMVFS achieves the best performance compared with three other information feedback strategies when considering the traffic flux and stability.展开更多
The brief arts and crafts of the ordinary fourdrinier are introduced first. After the intractable points of paper basis weight (BW) control are analyzed, an autotuning PID/PI control algorithm based on relay feedback ...The brief arts and crafts of the ordinary fourdrinier are introduced first. After the intractable points of paper basis weight (BW) control are analyzed, an autotuning PID/PI control algorithm based on relay feedback identification is proposed, which has such advantages as simple parameter adjustment, little dependence on process model, strong robustness and easiness to implementation. And it is very suitable for controlling such processes as BW loop with large time delay.展开更多
An experimental study of an active body-weight support(BWS) system for improving treadmill-based locomotion training is performed.The dynamical foundation of the proposed system is developed based on a simplified ca...An experimental study of an active body-weight support(BWS) system for improving treadmill-based locomotion training is performed.The dynamical foundation of the proposed system is developed based on a simplified cable suspended mass-spring-damping system which is used to mimic the vertical gait of a walking human.A specifically designed cable pulley suspended cam-slider system is used to mimic the walking gait of a human in vertical direction.A load cell is installed to connect the slider and the cable which is driven by a winch based on the acceleration feedback.The contact force between the slider and the cam is measured to evaluate the walking load of the system.The experimental results demonstrate that the proposed active BWS system can simultaneously reduce both gravitational and inertial load of the walking body,which implies that the walking body suspended in such a BWS system will dynamically behave as if certain amount of body mass had been removed.展开更多
基金Project supported by the Ph. D. Programs Foundation of the Ministry of Education of China (Grant No. 20093108110019)
文摘Information feedback strategies can influence the traffic efficiency of intelligent traffic systems greatly.Based on the more practical symmetrical two-route scenario with one entrance and one exit,an improved weighted mean velocity feedback strategy(WMVFS) is proposed,which is not sensitive to the precision of global position system(GPS) devices.The applicability of WMVFS to different weight factors,aggressive probabilities,densities of dynamic vehicles,and different two-route scenarios(symmetrical scenario and asymmetrical scenario with a speed limit bottleneck) is analyzed.Results show that WMVFS achieves the best performance compared with three other information feedback strategies when considering the traffic flux and stability.
基金This project was supported by the National Key Project in the Ninth Fivc-Year Plan(97-619-02-03).
文摘The brief arts and crafts of the ordinary fourdrinier are introduced first. After the intractable points of paper basis weight (BW) control are analyzed, an autotuning PID/PI control algorithm based on relay feedback identification is proposed, which has such advantages as simple parameter adjustment, little dependence on process model, strong robustness and easiness to implementation. And it is very suitable for controlling such processes as BW loop with large time delay.
文摘An experimental study of an active body-weight support(BWS) system for improving treadmill-based locomotion training is performed.The dynamical foundation of the proposed system is developed based on a simplified cable suspended mass-spring-damping system which is used to mimic the vertical gait of a walking human.A specifically designed cable pulley suspended cam-slider system is used to mimic the walking gait of a human in vertical direction.A load cell is installed to connect the slider and the cable which is driven by a winch based on the acceleration feedback.The contact force between the slider and the cam is measured to evaluate the walking load of the system.The experimental results demonstrate that the proposed active BWS system can simultaneously reduce both gravitational and inertial load of the walking body,which implies that the walking body suspended in such a BWS system will dynamically behave as if certain amount of body mass had been removed.