Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional obje...Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional object detection(2DOD)frameworks to predict the three-dimensional bounding box(3DBB)of objects captured in 2D RGB images.However,these methods often require multiple images,making them less feasible for various real-time scenarios.To address these challenges,the emergence of agile convolutional neural networks(CNNs)capable of inferring depth froma single image opens a new avenue for investigation.The paper proposes a novel ELDENet network designed to produce cost-effective 3DBounding Box Estimation(3D-BBE)froma single image.This novel framework comprises the PP-LCNet as the encoder and a fast convolutional decoder.Additionally,this integration includes a Squeeze-Exploit(SE)module utilizing the Math Kernel Library for Deep Neural Networks(MKLDNN)optimizer to enhance convolutional efficiency and streamline model size during effective training.Meanwhile,the proposed multi-scale sub-pixel decoder generates high-quality depth maps while maintaining a compact structure.Furthermore,the generated depthmaps provide a clear perspective with distance details of objects in the environment.These depth insights are combined with 2DOD for precise evaluation of 3D Bounding Boxes(3DBB),facilitating scene understanding and optimal route planning for mobile robots.Based on the estimated object center of the 3DBB,the Deep Reinforcement Learning(DRL)-based obstacle avoidance strategy for MRs is developed.Experimental results demonstrate that our model achieves state-of-the-art performance across three datasets:NYU-V2,KITTI,and Cityscapes.Overall,this framework shows significant potential for adaptation in intelligent mechatronic systems,particularly in developing knowledge-driven systems for mobile robot navigation.展开更多
Human pose estimation has received much attention from the research community because of its wide range of applications.However,current research for pose estimation is usually complex and computationally intensive,esp...Human pose estimation has received much attention from the research community because of its wide range of applications.However,current research for pose estimation is usually complex and computationally intensive,especially the feature loss problems in the feature fusion process.To address the above problems,we propose a lightweight human pose estimation network based on multi-attention mechanism(LMANet).In our method,network parameters can be significantly reduced by lightweighting the bottleneck blocks with depth-wise separable convolution on the high-resolution networks.After that,we also introduce a multi-attention mechanism to improve the model prediction accuracy,and the channel attention module is added in the initial stage of the network to enhance the local cross-channel information interaction.More importantly,we inject spatial crossawareness module in the multi-scale feature fusion stage to reduce the spatial information loss during feature extraction.Extensive experiments on COCO2017 dataset and MPII dataset show that LMANet can guarantee a higher prediction accuracy with fewer network parameters and computational effort.Compared with the highresolution network HRNet,the number of parameters and the computational complexity of the network are reduced by 67%and 73%,respectively.展开更多
Weighted exponential distribution W ED(α,λ)with shape parameterαand scale parameterλpossesses some good properties and can be used as a good fit to survival time data compared to other distributions such as gamma,...Weighted exponential distribution W ED(α,λ)with shape parameterαand scale parameterλpossesses some good properties and can be used as a good fit to survival time data compared to other distributions such as gamma,Weibull,or generalized exponential distribution.In this article,we proved the existence and uniqueness of the maximum likelihood estimator(MLE)of the parameters of W ED(α,λ)in simple random sampling(SRS)and provided explicit expressions for the Fisher information number in SRS.Moreover,we also proved the existence and uniqueness of the MLE of the parameters of W ED(α,λ)in ranked set sampling(RSS)and provided explicit expressions for the Fisher information number in RSS.Simulation studies show that these MLEs in RSS can be real competitors for those in SRS.展开更多
Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abn...Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.展开更多
Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in...Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.展开更多
Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In to...Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In total, leaf area and leaf weight were measured from 455 fresh leaves of 25 trees of eucalyptus in southern China. The majority of the data (80%) were used for model calibration, and the remaining data (20%) were used for model validation. The linear, compound and power models were tested. Based on goodness of fit, prediction ability and residual performance, we found that linear and power models could best describe the relationship between leaf area and weight for young leaf and mature leaf, respectively. The study provides a simple and reliable method for estimating single-leaf area, which has a good potential in the functional- structural model of eucalyptus.展开更多
This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises...This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for controlling the disturbances of singular observations and the kinematic model errors. It satisfies the practical requirements of the residual vector and innovation vector to sufficiently utilize observation information, thus weakening the disturbing effect of the kinematic model error and observation model error on the state parameter estimation. Theories and algorithms of random weighting estimation are established for estimating the covariance matrices of observation residual vectors and innovation vec- tors. This random weighting estimation method provides an effective solution for improving the positioning accuracy in dynamic navigation. Experimental results show that compared with the Kalman filtering, the extended Kalman filtering and the adaptive windowing filtering, the proposed method can adaptively determine the covariance matrices of observation error and state error, effectively resist the disturbances caused by system error and observation error, and significantly improve the positioning accu- racy for dynamic navigation.展开更多
BACKGROUND: In emergency conditions, the actual weight of infants and young children are essential for treatments. The RAMATHIBODI Pediatric Emergency Drug Card or RAMA Ped Card has also been developed to estimate act...BACKGROUND: In emergency conditions, the actual weight of infants and young children are essential for treatments. The RAMATHIBODI Pediatric Emergency Drug Card or RAMA Ped Card has also been developed to estimate actual weight of the subjects. This study aimed to validate the RAMA Ped Card in correctly identifying the actual weight of infants and young adults.METHODS: This study was a prospective study. We enrolled all consecutive patients under 15 years of age who visited the emergency department(ED). All eligible patients' actual weight and height were measured at the screening point of the ED. The weight of each patient was also measured using the unlabeled RAMA Ped Card. The Cohen's kappa values and agreement percentages were calculated.RESULTS: During the study period, there were 345 eligible patients. The RAMA Ped Card had a 61.16% agreement with the actual weight with a kappa of 0.54(P<0.01), while the agreement with the actual height had a kappa of 0.90 and 91.59% agreement. Sub-group analysis found kappa scores with good range in two categories: in cases of accidents and in the infant group(kappa of 0.68 and 0.65, respectively).CONCLUSION: The RAMA Ped Card had a fair correlation with the actual weight in child patients presenting at the ED. Weight estimation in infant patients and children who presented with accidents were more accurate.展开更多
In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain...In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.展开更多
The errors in radar quantitative precipitation estimations consist not only of systematic biases caused by random noises but also spatially nonuniform biases in radar rainfall at individual rain-gauge stations. In thi...The errors in radar quantitative precipitation estimations consist not only of systematic biases caused by random noises but also spatially nonuniform biases in radar rainfall at individual rain-gauge stations. In this study, a real-time adjustment to the radar reflectivity rainfall rates (Z R) relationship scheme and the gauge-corrected, radar-based, estimation scheme with inverse distance weighting interpolation was devel- oped. Based on the characteristics of the two schemes, the two-step correction technique of radar quantitative precipitation estimation is proposed. To minimize the errors between radar quantitative precipitation es- timations and rain gauge observations, a real-time adjustment to the Z R relationship scheme is used to remove systematic bias on the time-domain. The gauge-corrected, radar-based, estimation scheme is then used to eliminate non-uniform errors in space. Based on radar data and rain gauge observations near the Huaihe River, the two-step correction technique was evaluated using two heavy-precipitation events. The results show that the proposed scheme improved not only in the underestimation of rainfall but also reduced the root-mean-square error and the mean relative error of radar-rain gauge pairs.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
This study was undertaken to determine the accuracy of using Ultrasound (US) estimation of twin fetuses by use of Artificial Neural Network. At First, as the training group, we performed US examinations on 186 healthy...This study was undertaken to determine the accuracy of using Ultrasound (US) estimation of twin fetuses by use of Artificial Neural Network. At First, as the training group, we performed US examinations on 186 healthy singleton fetuses within 3 days of delivery. Three input variables were used to construct the ANN model: abdominal circumference (AC), ab-dominal diameter (AD), biparietal diameter (BPD). Then, a total of 121 twin fetuses were assessed sub-sequently as the validation group. In validation group, the mean absolute error and the mean absolute per-cent error between estimated fetal weight and actual fetal weight was 261.77 g and 7.81%, respectively. Results show that, twin estimation of birth weight by ultrasound correlates fairly well with the actual weights of twin fetuses.展开更多
It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for jo...It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for joint estimation of multiple disjoint sources and sensor locations in this paper. Unlike some existing works, the presented method is based on more general measurement model, and therefore it can be applied to many different localization scenarios.Besides, it does not have the initialization and local convergence problem. The closed-form expression for the covariance matrix of the proposed TWLS estimator is also derived by exploiting the first-order perturbation analysis. Moreover, the estimation accuracy of the TWLS method is shown analytically to achieve the Cramér-Rao Bound(CRB) before the threshold effect takes place. The theoretical analysis is also performed in a common mathematical framework, rather than aiming at some specific signal metrics. Finally, two numerical experiments are performed to support the theoretical development in this paper.展开更多
The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how ...The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how to accurately estimate the SATLR in the regions with complex terrain and climatic condition has been a great challenge for researchers.The geographically weighted regression(GWR)model was applied in this paper to estimate the SATLR in China’s mainland,and then the assessment and validation for the GWR model were made.The spatial pattern of regression residuals which was identified by Moran’s Index indicated that the GWR model was broadly reasonable for the estimation of SATLR.The small mean absolute error(MAE)in all months indicated that the GWR model had a strong predictive ability for the surface air temperature.The comparison with previous studies for the seasonal mean SATLR further evidenced the accuracy of the estimation.Therefore,the GWR method has potential application for estimating the SATLR in a large region with complex terrain and climatic condition.展开更多
Previous works mainly focused on estimating direct relationship strength in social networks. If two users are not directly connected in a social network, there is no direct relationship. In order to estimate the relat...Previous works mainly focused on estimating direct relationship strength in social networks. If two users are not directly connected in a social network, there is no direct relationship. In order to estimate the relationship strength between two indirectly connected users as well as directly connected users, this paper proposes an estimation method for relationship strength in weighted social network graphs, which is based on the trust propagation strategy and the estimation of direct relationship strength. Our method considers the length of a relationship path, the number of relationship paths and the edge weights (direct relationship strength) along with a relationship path to estimate the strength of indirect relationship. Then it synthesizes the direct and indirect relationship strength to represent the strength of relationship between two users in social net- works. Thus our method can fully estimate the relationship strength between any two users in a social network no matter whether they are directly connected or not.展开更多
We consider n observations from the GARCH-type model: Z = UY, where U and Y are independent random variables. We aim to estimate density function Y where Y have a weighted distribution. We determine a sharp upper boun...We consider n observations from the GARCH-type model: Z = UY, where U and Y are independent random variables. We aim to estimate density function Y where Y have a weighted distribution. We determine a sharp upper bound of the associated mean integrated square error. We also make use of the measure of expected true evidence, so as to determine when model leads to a crisis and causes data to be lost.展开更多
Cryopreservation is the main functional means for storage of excess embryos produced from artificial reproductive technologies;the process assumes embryos chemical nature is highly conserved across embryos of the same...Cryopreservation is the main functional means for storage of excess embryos produced from artificial reproductive technologies;the process assumes embryos chemical nature is highly conserved across embryos of the same species. However, in practice there appears to be a high degree of variability in embryo tolerance to cryopreservation, suggesting potential differences in embryo chemistry. The objective of the current study was to develop reproducible means of estimating relative embryos weight and associating those weights to lipid content. Relative embryo weights of frozen/thawed in-vivo Jersey and Crossbred beef breed embryos were determined using a modified specific gravity chamber. Embryo weights were then correlated with lipid content. Results suggest that beef cattle embryos are 20% - 27% heavier than Jersey embryos展开更多
This paper puts forward a Poisson-generalized Pareto (Poisson-GP) distribution. This new form of compound extreme value distribution expands the existing application of compound extreme value distribution, and can be ...This paper puts forward a Poisson-generalized Pareto (Poisson-GP) distribution. This new form of compound extreme value distribution expands the existing application of compound extreme value distribution, and can be applied to predicting financial risk, large insurance settlement and high-grade earthquake, etc. Compared with the maximum likelihood estimation (MLE) and compound moment estimation (CME), probability-weighted moment estimation (PWME) is used to estimate the parameters of the distribution function. The specific formulas are presented. Through Monte Carlo simulation with sample sizes 10, 20, 50, 100, 1 000, it is concluded that PWME is an efficient method and it behaves steadily. The mean square errors (MSE) of estimators by PWME are much smaller than those of estimators by CME, and there is no significant difference between PWME and MLE. Finally, an example of foreign exchange rate is given. For Dollar/Pound exchange rates from 1990-01-02 to 2006-12-29, this paper formulates the distribution function of the largest loss among the investment losses exceeding a certain threshold by Poisson-GP compound extreme value distribution, and obtains predictive values at different confidence levels.展开更多
The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS...The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS) according to the impulsive characteristics of fractional lower order α-stable noises. Theoretic analysis and computer simulations indicate that the proposed covariation based HB weighted (COV-HB) algorithm can suppress impulsive noises in one received signal for 1 ≤α≤ 2, whereas the other proposed fractional lower order eovariancebased HB weighted (FLOC-HB) algorithm has robust performance under arbitrary impulsive noise conditions for the whole range of 0 〈α≤ 2.展开更多
文摘Precise and robust three-dimensional object detection(3DOD)presents a promising opportunity in the field of mobile robot(MR)navigation.Monocular 3DOD techniques typically involve extending existing twodimensional object detection(2DOD)frameworks to predict the three-dimensional bounding box(3DBB)of objects captured in 2D RGB images.However,these methods often require multiple images,making them less feasible for various real-time scenarios.To address these challenges,the emergence of agile convolutional neural networks(CNNs)capable of inferring depth froma single image opens a new avenue for investigation.The paper proposes a novel ELDENet network designed to produce cost-effective 3DBounding Box Estimation(3D-BBE)froma single image.This novel framework comprises the PP-LCNet as the encoder and a fast convolutional decoder.Additionally,this integration includes a Squeeze-Exploit(SE)module utilizing the Math Kernel Library for Deep Neural Networks(MKLDNN)optimizer to enhance convolutional efficiency and streamline model size during effective training.Meanwhile,the proposed multi-scale sub-pixel decoder generates high-quality depth maps while maintaining a compact structure.Furthermore,the generated depthmaps provide a clear perspective with distance details of objects in the environment.These depth insights are combined with 2DOD for precise evaluation of 3D Bounding Boxes(3DBB),facilitating scene understanding and optimal route planning for mobile robots.Based on the estimated object center of the 3DBB,the Deep Reinforcement Learning(DRL)-based obstacle avoidance strategy for MRs is developed.Experimental results demonstrate that our model achieves state-of-the-art performance across three datasets:NYU-V2,KITTI,and Cityscapes.Overall,this framework shows significant potential for adaptation in intelligent mechatronic systems,particularly in developing knowledge-driven systems for mobile robot navigation.
基金the National Natural Science Foundation of China(Nos.61775139,62072126,61772164,and 61872242)。
文摘Human pose estimation has received much attention from the research community because of its wide range of applications.However,current research for pose estimation is usually complex and computationally intensive,especially the feature loss problems in the feature fusion process.To address the above problems,we propose a lightweight human pose estimation network based on multi-attention mechanism(LMANet).In our method,network parameters can be significantly reduced by lightweighting the bottleneck blocks with depth-wise separable convolution on the high-resolution networks.After that,we also introduce a multi-attention mechanism to improve the model prediction accuracy,and the channel attention module is added in the initial stage of the network to enhance the local cross-channel information interaction.More importantly,we inject spatial crossawareness module in the multi-scale feature fusion stage to reduce the spatial information loss during feature extraction.Extensive experiments on COCO2017 dataset and MPII dataset show that LMANet can guarantee a higher prediction accuracy with fewer network parameters and computational effort.Compared with the highresolution network HRNet,the number of parameters and the computational complexity of the network are reduced by 67%and 73%,respectively.
基金Supported by the National Science Foundation of China(11901236,12261036)Scientific Research Fund of Hunan Provincial Education Department(21A0328)+2 种基金Provincial Natural Science Foundation of Hunan(2022JJ30469)Young Core Teacher Foundation of Hunan Province([2020]43)Provincial Postgraduate Innovation Foundation of Hunan(CX20221113)。
文摘Weighted exponential distribution W ED(α,λ)with shape parameterαand scale parameterλpossesses some good properties and can be used as a good fit to survival time data compared to other distributions such as gamma,Weibull,or generalized exponential distribution.In this article,we proved the existence and uniqueness of the maximum likelihood estimator(MLE)of the parameters of W ED(α,λ)in simple random sampling(SRS)and provided explicit expressions for the Fisher information number in SRS.Moreover,we also proved the existence and uniqueness of the MLE of the parameters of W ED(α,λ)in ranked set sampling(RSS)and provided explicit expressions for the Fisher information number in RSS.Simulation studies show that these MLEs in RSS can be real competitors for those in SRS.
基金funded by the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.
基金Supported by the State Key Laboratory of Acoustics and Marine Information Chinese Academy of Sciences(SKL A202507).
文摘Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.
文摘Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In total, leaf area and leaf weight were measured from 455 fresh leaves of 25 trees of eucalyptus in southern China. The majority of the data (80%) were used for model calibration, and the remaining data (20%) were used for model validation. The linear, compound and power models were tested. Based on goodness of fit, prediction ability and residual performance, we found that linear and power models could best describe the relationship between leaf area and weight for young leaf and mature leaf, respectively. The study provides a simple and reliable method for estimating single-leaf area, which has a good potential in the functional- structural model of eucalyptus.
基金National Natural Science Foundation of China(60574034)Aeronautical Science Foundation of China(20080818004)
文摘This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for controlling the disturbances of singular observations and the kinematic model errors. It satisfies the practical requirements of the residual vector and innovation vector to sufficiently utilize observation information, thus weakening the disturbing effect of the kinematic model error and observation model error on the state parameter estimation. Theories and algorithms of random weighting estimation are established for estimating the covariance matrices of observation residual vectors and innovation vec- tors. This random weighting estimation method provides an effective solution for improving the positioning accuracy in dynamic navigation. Experimental results show that compared with the Kalman filtering, the extended Kalman filtering and the adaptive windowing filtering, the proposed method can adaptively determine the covariance matrices of observation error and state error, effectively resist the disturbances caused by system error and observation error, and significantly improve the positioning accu- racy for dynamic navigation.
基金supported by a grant of Faculty of Medicine,Khon Kaen University,Thailand(Grant Number:RG59301)
文摘BACKGROUND: In emergency conditions, the actual weight of infants and young children are essential for treatments. The RAMATHIBODI Pediatric Emergency Drug Card or RAMA Ped Card has also been developed to estimate actual weight of the subjects. This study aimed to validate the RAMA Ped Card in correctly identifying the actual weight of infants and young adults.METHODS: This study was a prospective study. We enrolled all consecutive patients under 15 years of age who visited the emergency department(ED). All eligible patients' actual weight and height were measured at the screening point of the ED. The weight of each patient was also measured using the unlabeled RAMA Ped Card. The Cohen's kappa values and agreement percentages were calculated.RESULTS: During the study period, there were 345 eligible patients. The RAMA Ped Card had a 61.16% agreement with the actual weight with a kappa of 0.54(P<0.01), while the agreement with the actual height had a kappa of 0.90 and 91.59% agreement. Sub-group analysis found kappa scores with good range in two categories: in cases of accidents and in the infant group(kappa of 0.68 and 0.65, respectively).CONCLUSION: The RAMA Ped Card had a fair correlation with the actual weight in child patients presenting at the ED. Weight estimation in infant patients and children who presented with accidents were more accurate.
基金supported by the National Natural Science Foundation of China(11271020)the Distinguished Young Scholars Foundation of Anhui Province(1608085J06)supported by the National Natural Science Foundation of China(11171062)
文摘In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.
基金supported bythe Special Fund for Basic Research and Operation of the Chinese Academy of Meteorological Sciences (GrantNo. 2011Y004)the Research and Development Special Fund for Public Welfare Industry (Meteorology+2 种基金Grant No.GYHY201006042)the National Natural Science Foundation of China (Grant No. 40975014)the Open Research Fund for State Key Laboratory of Hydroscience and Engineering of Tsinghua University (the search of basin QPE and QPF based on new generation of weather and numerical models)
文摘The errors in radar quantitative precipitation estimations consist not only of systematic biases caused by random noises but also spatially nonuniform biases in radar rainfall at individual rain-gauge stations. In this study, a real-time adjustment to the radar reflectivity rainfall rates (Z R) relationship scheme and the gauge-corrected, radar-based, estimation scheme with inverse distance weighting interpolation was devel- oped. Based on the characteristics of the two schemes, the two-step correction technique of radar quantitative precipitation estimation is proposed. To minimize the errors between radar quantitative precipitation es- timations and rain gauge observations, a real-time adjustment to the Z R relationship scheme is used to remove systematic bias on the time-domain. The gauge-corrected, radar-based, estimation scheme is then used to eliminate non-uniform errors in space. Based on radar data and rain gauge observations near the Huaihe River, the two-step correction technique was evaluated using two heavy-precipitation events. The results show that the proposed scheme improved not only in the underestimation of rainfall but also reduced the root-mean-square error and the mean relative error of radar-rain gauge pairs.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
文摘This study was undertaken to determine the accuracy of using Ultrasound (US) estimation of twin fetuses by use of Artificial Neural Network. At First, as the training group, we performed US examinations on 186 healthy singleton fetuses within 3 days of delivery. Three input variables were used to construct the ANN model: abdominal circumference (AC), ab-dominal diameter (AD), biparietal diameter (BPD). Then, a total of 121 twin fetuses were assessed sub-sequently as the validation group. In validation group, the mean absolute error and the mean absolute per-cent error between estimated fetal weight and actual fetal weight was 261.77 g and 7.81%, respectively. Results show that, twin estimation of birth weight by ultrasound correlates fairly well with the actual weights of twin fetuses.
基金co-supported by the National Natural Science Foundation of China (Nos. 61201381, 61401513 and 61772548)the China Postdoctoral Science Foundation (No. 2016M592989)+1 种基金the Self-Topic Foundation of Information Engineering University, China (No. 2016600701)the Outstanding Youth Foundation of Information Engineering University, China (No. 2016603201)
文摘It is well known that the Two-step Weighted Least-Squares(TWLS) is a widely used method for source localization and sensor position refinement. For this reason, we propose a unified framework of the TWLS method for joint estimation of multiple disjoint sources and sensor locations in this paper. Unlike some existing works, the presented method is based on more general measurement model, and therefore it can be applied to many different localization scenarios.Besides, it does not have the initialization and local convergence problem. The closed-form expression for the covariance matrix of the proposed TWLS estimator is also derived by exploiting the first-order perturbation analysis. Moreover, the estimation accuracy of the TWLS method is shown analytically to achieve the Cramér-Rao Bound(CRB) before the threshold effect takes place. The theoretical analysis is also performed in a common mathematical framework, rather than aiming at some specific signal metrics. Finally, two numerical experiments are performed to support the theoretical development in this paper.
基金The National Key R&D Program,No.2018YFA0605603National Natural Science Foundation of China,No.41575003。
文摘The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how to accurately estimate the SATLR in the regions with complex terrain and climatic condition has been a great challenge for researchers.The geographically weighted regression(GWR)model was applied in this paper to estimate the SATLR in China’s mainland,and then the assessment and validation for the GWR model were made.The spatial pattern of regression residuals which was identified by Moran’s Index indicated that the GWR model was broadly reasonable for the estimation of SATLR.The small mean absolute error(MAE)in all months indicated that the GWR model had a strong predictive ability for the surface air temperature.The comparison with previous studies for the seasonal mean SATLR further evidenced the accuracy of the estimation.Therefore,the GWR method has potential application for estimating the SATLR in a large region with complex terrain and climatic condition.
文摘Previous works mainly focused on estimating direct relationship strength in social networks. If two users are not directly connected in a social network, there is no direct relationship. In order to estimate the relationship strength between two indirectly connected users as well as directly connected users, this paper proposes an estimation method for relationship strength in weighted social network graphs, which is based on the trust propagation strategy and the estimation of direct relationship strength. Our method considers the length of a relationship path, the number of relationship paths and the edge weights (direct relationship strength) along with a relationship path to estimate the strength of indirect relationship. Then it synthesizes the direct and indirect relationship strength to represent the strength of relationship between two users in social net- works. Thus our method can fully estimate the relationship strength between any two users in a social network no matter whether they are directly connected or not.
文摘We consider n observations from the GARCH-type model: Z = UY, where U and Y are independent random variables. We aim to estimate density function Y where Y have a weighted distribution. We determine a sharp upper bound of the associated mean integrated square error. We also make use of the measure of expected true evidence, so as to determine when model leads to a crisis and causes data to be lost.
文摘Cryopreservation is the main functional means for storage of excess embryos produced from artificial reproductive technologies;the process assumes embryos chemical nature is highly conserved across embryos of the same species. However, in practice there appears to be a high degree of variability in embryo tolerance to cryopreservation, suggesting potential differences in embryo chemistry. The objective of the current study was to develop reproducible means of estimating relative embryos weight and associating those weights to lipid content. Relative embryo weights of frozen/thawed in-vivo Jersey and Crossbred beef breed embryos were determined using a modified specific gravity chamber. Embryo weights were then correlated with lipid content. Results suggest that beef cattle embryos are 20% - 27% heavier than Jersey embryos
基金National Natural Science Foundation of China (No.70573077)
文摘This paper puts forward a Poisson-generalized Pareto (Poisson-GP) distribution. This new form of compound extreme value distribution expands the existing application of compound extreme value distribution, and can be applied to predicting financial risk, large insurance settlement and high-grade earthquake, etc. Compared with the maximum likelihood estimation (MLE) and compound moment estimation (CME), probability-weighted moment estimation (PWME) is used to estimate the parameters of the distribution function. The specific formulas are presented. Through Monte Carlo simulation with sample sizes 10, 20, 50, 100, 1 000, it is concluded that PWME is an efficient method and it behaves steadily. The mean square errors (MSE) of estimators by PWME are much smaller than those of estimators by CME, and there is no significant difference between PWME and MLE. Finally, an example of foreign exchange rate is given. For Dollar/Pound exchange rates from 1990-01-02 to 2006-12-29, this paper formulates the distribution function of the largest loss among the investment losses exceeding a certain threshold by Poisson-GP compound extreme value distribution, and obtains predictive values at different confidence levels.
基金supported by the National Natural Science Foundation of China (60372081)China Postdoctoral Science Foundation (20070410347)the Doctor Startup Fund of Liaoning Province (20071076)
文摘The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS) according to the impulsive characteristics of fractional lower order α-stable noises. Theoretic analysis and computer simulations indicate that the proposed covariation based HB weighted (COV-HB) algorithm can suppress impulsive noises in one received signal for 1 ≤α≤ 2, whereas the other proposed fractional lower order eovariancebased HB weighted (FLOC-HB) algorithm has robust performance under arbitrary impulsive noise conditions for the whole range of 0 〈α≤ 2.