期刊文献+
共找到285,353篇文章
< 1 2 250 >
每页显示 20 50 100
DDNet:A Novel Dynamic Lightweight Super-Resolution Algorithm for Arbitrary Scales
1
作者 Yiqiao Gong Chunlai Wu +4 位作者 Wenfeng Zheng Siyu Lu Guangyu Xu Lijuan Zhang Lirong Yin 《Computer Modeling in Engineering & Sciences》 2025年第11期2223-2252,共30页
Recent Super-Resolution(SR)algorithms often suffer from excessive model complexity,high computational costs,and limited flexibility across varying image scales.To address these challenges,we propose DDNet,a dynamic an... Recent Super-Resolution(SR)algorithms often suffer from excessive model complexity,high computational costs,and limited flexibility across varying image scales.To address these challenges,we propose DDNet,a dynamic and lightweight SR framework designed for arbitrary scaling factors.DDNet integrates a residual learning structure with an Adaptively fusion Feature Block(AFB)and a scale-aware upsampling module,effectively reducing parameter overhead while preserving reconstruction quality.Additionally,we introduce DDNetGAN,an enhanced variant that leverages a relativistic Generative Adversarial Network(GAN)to further improve texture realism.To validate the proposed models,we conduct extensive training using the DIV2K and Flickr2K datasets and evaluate performance across standard benchmarks including Set5,Set14,Urban100,Manga109,and BSD100.Our experiments cover both symmetric and asymmetric upscaling factors and incorporate ablation studies to assess key components.Results show that DDNet and DDNetGAN achieve competitive performance compared with mainstream SR algorithms,demonstrating a strong balance between accuracy,efficiency,and flexibility.These findings highlight the potential of our approach for practical real-world super-resolution applications. 展开更多
关键词 DDNet DDNetGAN fully dynamic LIGHTweighT arbitrary scale super-resolution algorithm
在线阅读 下载PDF
SW-YOLO:Lightweight Attitude Estimation Algorithm Based on Weighted Convolution and Star Network
2
作者 Qian Xu 《Journal of Electronic Research and Application》 2025年第5期192-199,共8页
This paper proposes SW-YOLO(StarNet Weighted-Conv YOLO),a lightweight human pose estimation network for edge devices.Current mainstream pose estimation algorithms are computationally inefficient and have poor feature ... This paper proposes SW-YOLO(StarNet Weighted-Conv YOLO),a lightweight human pose estimation network for edge devices.Current mainstream pose estimation algorithms are computationally inefficient and have poor feature capture capabilities for complex poses and occlusion scenarios.This work introduces a lightweight backbone architecture that integrates WConv(Weighted Convolution)and StarNet modules to address these issues.Leveraging StarNet’s superior capabilities in multi-level feature fusion and long-range dependency modeling,this architecture enhances the model’s spatial perception of human joint structures and contextual information integration.These improvements significantly enhance robustness in complex scenarios involving occlusion and deformation.Additionally,the introduction of WConv convolution operations,based on weight recalibration and receptive field optimization,dynamically adjusts feature importance during convolution.This reduces redundant computations while maintaining or enhancing feature representation capabilities at an extremely low computational cost.Consequently,SW-YOLO substantially reduces model complexity and inference latency while preserving high accuracy,significantly outperforming existing lightweight networks. 展开更多
关键词 YOLO11-Pose WConv StarNet Lightweight algorithms Feature fusion
在线阅读 下载PDF
Improved Guide-Weight method for multi-material topology optimization under inertial loads based on the alternating active-phase algorithm
3
作者 Zihao Meng Yiru Ren 《Acta Mechanica Sinica》 2025年第8期138-148,共11页
The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique cha... The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique challenges when inertial loads become dominant:non-monotonous behavior of the objective function,possible unconstrained characterization of the optimal solution,and parasitic effects.Herein,an improved Guide-Weight approach is introduced,which effectively addresses the structural topology optimization problem when subjected to inertial loads.Smooth and fast convergence of the compliance is achieved by the approach,while also maintaining the effectiveness of the volume constraints.The rational approximation of material properties model and smooth design are utilized to guarantee clear boundaries of the final structure,facilitating its seamless integration into manufacturing processes.The framework provided by the alternating active-phase algorithm is employed to decompose the multi-material topological problem under inertial loading into a set of sub-problems.The optimization of multi-material under inertial loads is accomplished through the effective resolution of these sub-problems using the improved Guide-Weight method.The effectiveness of the proposed approach is demonstrated through numerical examples involving two-phase and multi-phase materials. 展开更多
关键词 Topology optimization Improved Guide-weight method Alternating active-phase algorithm Inertial loads Multi-material
原文传递
A Full-Newton Step Feasible Interior-Point Algorithm for the Special Weighted Linear Complementarity Problems Based on Algebraic Equivalent Transformation
4
作者 Jing GE Mingwang ZHANG Panjie TIAN 《Journal of Mathematical Research with Applications》 2025年第4期555-568,共14页
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform... In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm. 展开更多
关键词 interior-point algorithm weighted linear complementarity problem algebraic equivalent transformation search direction iteration complexity
原文传递
Competitive adaptive reweighted sampling algorithm identifies HIF-1α-regulated protein markers governing early energy metabolism in post-slaughter Tan sheep meat
5
作者 Shuang Gao Chen Ji +3 位作者 Jiarui Cui Yongrui Wang Yulong Luo Ruiming Luo 《Food Quality and Safety》 2025年第3期550-560,共11页
This study investigated hypoxia-inducible factor(HIF)-1α-mediated proteomic changes in post-slaughter Tan sheep skeletal muscle and identified energy metabolism biomarkers using the competitive adaptive reweighted sa... This study investigated hypoxia-inducible factor(HIF)-1α-mediated proteomic changes in post-slaughter Tan sheep skeletal muscle and identified energy metabolism biomarkers using the competitive adaptive reweighted sampling(CARS)algorithm.HIF-1αinhibition during early storage attenuated pH decline and significantly increased total colour change(ΔE)(P<0.05)while reducing myofibril fragmentation compared with controls.Proteomic profiling identified 257 differentially expressed proteins enriched in adenosine 5’-monophosphate(AMP)-activated protein kinase(AMPK),glycolysis,and HIF-1 signalling pathways.CARS analysis highlighted lactate dehydrogenase A(LDHA),phosphoglycerate kinase 1(PGK1;glycolytic enzyme),heat shock protein beta-6(HSPB6),and heat shock protein 90 kDa beta 1(HSP90B1)as key energy metabolism biomarkers.The results suggested that HIF-1 stabilised ATP production under hypoxia conditions by suppressing glycogen synthesis,enhancing glycolysis,modulating HSP activity to preserve cellular homeostasis,and influencing cytoskeletal proteins,thereby affecting meat quality.These results provide novel insights into post-mortem muscle energy metabolism regulation and potential targets for meat quality optimisation. 展开更多
关键词 Tan sheep meat hypoxia-inducible factor-1α(HIF-1α) proteomics competitive adaptive reweighted sampling(CARS)algorithm energy metabolism
原文传递
A lightweight semantic segmentation algorithm integrating CA and ECA-Net modules 被引量:2
6
作者 GUO Zhihao MA Dongmei LUO Xiaoyun 《Optoelectronics Letters》 EI 2024年第9期568-576,共9页
Aiming at the existing semantic segmentation process due to the loss of pixel features and the complexity of calculating too many parameters,which leads to unsatisfactory segmentation results and too long time,this pa... Aiming at the existing semantic segmentation process due to the loss of pixel features and the complexity of calculating too many parameters,which leads to unsatisfactory segmentation results and too long time,this paper proposes a lightweight semantic segmentation algorithm based on the fusion of multiple modules.The algorithm is based on the pyramid scene parsing network(PSPNet).Firstly,Mobile Net V2 network is chosen as the feature extraction network to construct the lightweight network structure. 展开更多
关键词 NET network algorithm
原文传递
A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm 被引量:6
7
作者 Tie Yan Rui Xu +2 位作者 Shi-Hui Sun Zhao-Kai Hou Jin-Yu Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1135-1148,共14页
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ... Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation. 展开更多
关键词 Intelligent drilling Closed-loop drilling Lithology identification Random forest algorithm Feature extraction
原文传递
A Full-Newton Step Feasible Interior-Point Algorithm for the Special Weighted Linear Complementarity Problems Based on a Kernel Function 被引量:2
8
作者 GENG Jie ZHANG Mingwang ZHU Dechun 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第1期29-37,共9页
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ... In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method. 展开更多
关键词 interior-point algorithm weighted linear complementarity problem full-Newton step kernel function iteration complexity
原文传递
A Lightweight UAV Visual Obstacle Avoidance Algorithm Based on Improved YOLOv8 被引量:1
9
作者 Zongdong Du Xuefeng Feng +2 位作者 Feng Li Qinglong Xian Zhenhong Jia 《Computers, Materials & Continua》 SCIE EI 2024年第11期2607-2627,共21页
The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightwei... The importance of unmanned aerial vehicle(UAV)obstacle avoidance algorithms lies in their ability to ensure flight safety and collision avoidance,thereby protecting people and property.We propose UAD-YOLOv8,a lightweight YOLOv8-based obstacle detection algorithm optimized for UAV obstacle avoidance.The algorithm enhances the detection capability for small and irregular obstacles by removing the P5 feature layer and introducing deformable convolution v2(DCNv2)to optimize the cross stage partial bottleneck with 2 convolutions and fusion(C2f)module.Additionally,it reduces the model’s parameter count and computational load by constructing the unite ghost and depth-wise separable convolution(UGDConv)series of lightweight convolutions and a lightweight detection head.Based on this,we designed a visual obstacle avoidance algorithm that can improve the obstacle avoidance performance of UAVs in different environments.In particular,we propose an adaptive distance detection algorithm based on obstacle attributes to solve the ranging problem for multiple types and irregular obstacles to further enhance the UAV’s obstacle avoidance capability.To verify the effectiveness of the algorithm,the UAV obstacle detection(UAD)dataset was created.The experimental results show that UAD-YOLOv8 improves mAP50 by 3.4%and reduces GFLOPs by 34.5%compared to YOLOv8n while reducing the number of parameters by 77.4%and the model size by 73%.These improvements significantly enhance the UAV’s obstacle avoidance performance in complex environments,demonstrating its wide range of applications. 展开更多
关键词 Unmanned aerial vehicle obstacle detection obstacle avoidance algorithm
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
10
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Tree Detection Algorithm Based on Embedded YOLO Lightweight Network
11
作者 吕峰 王新彦 +2 位作者 李磊 江泉 易政洋 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期518-527,共10页
To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In th... To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In this study,a dataset of trees was constructed on the basis of a real lawn environment.According to the theory of channel incremental depthwise convolution and residual suppression,the Embedded-A module is proposed,which expands the depth of the feature map twice to form a residual structure to improve the lightweight degree of the model.According to residual fusion theory,the Embedded-B module is proposed,which improves the accuracy of feature-map downsampling by depthwise convolution and pooling fusion.The Embedded YOLO object detection network is formed by stacking the embedded modules and the fusion of feature maps of different resolutions.Experimental results on the testing set show that the Embedded YOLO tree detection algorithm has 84.17%and 69.91%average precision values respectively for trunk and spherical tree,and 77.04% mean average precision value.The number of convolution parameters is 1.78×10^(6),and the calculation amount is 3.85 billion float operations per second.The size of weight file is 7.11MB,and the detection speed can reach 179 frame/s.This study provides a theoretical basis for the lightweight application of the object detection algorithm based on deep learning for lawn mower robots. 展开更多
关键词 Embedded YOLO algorithm lightweight model machine vision tree detection mowing robot
原文传递
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
12
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
13
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 Decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
14
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
Quantifying the age peaks,age ranges and weights of detrital ages based on the EM algorithm
15
作者 Jintao Kong 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第4期217-229,共13页
Detrital geochronology fundamentally involves the quantification of major age ranges and their weights winthin an age distribution.This study presents a streamlined approach,modeling the age distribution of detrital z... Detrital geochronology fundamentally involves the quantification of major age ranges and their weights winthin an age distribution.This study presents a streamlined approach,modeling the age distribution of detrital zircons using a normal mixture model,and employs the Expectation-Maximization(EM)algorithm for precise estimations.A method is introduced to automatically select appropriate initial mean values for EM algorithm,enhancing its efficacy in detrital geochronology.This process entails multiple trials with varying numbers of age components leading to diverse k-component models.The model with the lowest Bayesian Information Criterion(BIC)is identified as the most suitable.For accurate component number and weight determination,a substantial sample size(n>200)is advisable. Our findings based on both synthetic and empirical datasets confirm that the normal mixture model,refined by the EM algorithm,reliably identifies key age parameters with minimal error.As a kind of probability density estimator,the normal mixture model offers a novel visualization tool for detrital data and an alternative foundation for KDE in calculating existing similarity metrics.Another focus of this study is the critical examination of quantitative metrics for comparing detrital zircon age patterns.Through a case study,this study demonstrates that metrics based on empirical cumulative probability distribution(such as K-S and Kuiper statistics)may lead to erroneous conclusions.The employment of the Kullback-Leibler(KL)divergence,a metric grounded in probability density estimation,is proposed.Reference critical values,simulated via the Monte Carlo method,provide more objective benchmarks for these quantitative metrics. All methodologies discussed are encapsulated in a series of MATLAB scripts,available as open-source code and a standalone application,facilitating wider adoption and application in the field. 展开更多
关键词 Detrital zircongeochronology Expectation-Maximization algorithm Kullback-Leibler divergence Quantifying comparison Age peaks ageranges andweights
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
16
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Gaussian Distance Weighted Algorithm for Geometric Characteristics of Three-Dimensional Discrete Curves
17
作者 Liyan Zhang Haiyi Ai +3 位作者 Shaohong Yan Haili Chen Jiali Zou Junqing Zhang 《Journal of Applied Mathematics and Physics》 2024年第10期3599-3612,共14页
Discrete curves are composed of a set of ordered discrete points distributed at the intersection of the scanning plane and the surface of the object. In order to accurately calculate the geometric characteristics of a... Discrete curves are composed of a set of ordered discrete points distributed at the intersection of the scanning plane and the surface of the object. In order to accurately calculate the geometric characteristics of any point on the discrete curve, a distance-based Gaussian weighted algorithm is proposed to estimate the geometric characteristics of three-dimensional space discrete curves. According to the definition of discrete derivatives, the algorithm fully considers the relative position difference between a specific point and its neighboring points, introduces the distance weighting idea, and integrates the smoothing strategy. The experiment uses two spatial discrete curves for uniform and non-uniform sampling, and compares them with two commonly used estimation algorithms. The comparative analysis is carried out in terms of sampling density, neighborhood radius and noise resistance. The experimental results show that the Gaussian distance weighted algorithm is effective and provides an efficient algorithm for underground pipeline safety detection. 展开更多
关键词 Discrete Curve Angle weight algorithm Comparison Underground Pipeline Inspection
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
18
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
19
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
20
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部