The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic w...The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic wigs is proposed and the design of an automated bionic wig weaving machine is presented based on an analysis of manual weaving principles and processes.Furthermore,according to the characteristics of the weaving machine and the distribution pattern of weaving nodes,the minimum weaving duration of a single hairnet is taken as the optimization goal,and a continuous weaving path planning for the weaving process of the mixed scheme is conducted.The weaving duration for various weaving paths are calculated and compared,and the results indicate that the duration of the S-shaped weaving path is always the shortest in different weaving regions.The designed automated weaving process and the weaving path planning provide a theoretical foundation and experimental data for achieving automated weaving of bionic wigs.展开更多
The interfacial solar evaporator is a key technology for eco-friendly desalination,playing a crucial role in alleviating the global water scarcity crisis.However,limitation of photothermal water evaporation efficiency...The interfacial solar evaporator is a key technology for eco-friendly desalination,playing a crucial role in alleviating the global water scarcity crisis.However,limitation of photothermal water evaporation efficiency persists due to inadequate water transfer at the water-steam interface.Herein,we present a new type of scalable and recyclable arch bridge photothermal fabric with efficient warp-direction water paths by a convenient shuttle-flying weaving technique.Compared to the previous overall layer-by-layer assembled fabric,our photothermal fabric precisely constructed effective water paths and achieved excellent water-heat distribution at the solar evaporation interface,which greatly improved the photothermal conversion efficiency and evaporation rate.By the design of the weaving process,the photothermal fabric shows a new interface contact mode of the water path fiber and polyaniline photothermal fiber.Besides,the arch-bridge type design not only minimizes heat loss area but also enhances the water evaporation area,resulting in high-efficiency all-weather available solar water evaporation.Furthermore,the results show that the temperature,evaporation rate and solar-vapor conversion efficiency of photothermal fabric can reach above 123℃,2.31 kg m^(-2)h^(-1)and 99.93%under a solar illumination of 1 kW m^(-2).The arch-bridge photo-thermal fabric with an excellent water evaporation rate has been successfully established,which provides a new paradigm for improving the sustainable seawater desalination rate.展开更多
基金Yuzhou Olandi Arts&Crafts Co.,Ltd.,Project of Development and Research of Wig Planting Equipment,China(No.HX103210723)。
文摘The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic wigs is proposed and the design of an automated bionic wig weaving machine is presented based on an analysis of manual weaving principles and processes.Furthermore,according to the characteristics of the weaving machine and the distribution pattern of weaving nodes,the minimum weaving duration of a single hairnet is taken as the optimization goal,and a continuous weaving path planning for the weaving process of the mixed scheme is conducted.The weaving duration for various weaving paths are calculated and compared,and the results indicate that the duration of the S-shaped weaving path is always the shortest in different weaving regions.The designed automated weaving process and the weaving path planning provide a theoretical foundation and experimental data for achieving automated weaving of bionic wigs.
基金supported by the Research Initiated Project of Chengdu University(2081921027)the Key Laboratory of Materials and Surface Technology,Ministry of Education(NO.xxx-2023-yb010)+2 种基金the Bureau of Science&Technology and Intellectual Property Nanchong City(22SXZRKX0017)the North Sichuan Medical College(CBY22-ZDA07,CBY21-QD-04)National Natural Science Foundation of China(52205182).
文摘The interfacial solar evaporator is a key technology for eco-friendly desalination,playing a crucial role in alleviating the global water scarcity crisis.However,limitation of photothermal water evaporation efficiency persists due to inadequate water transfer at the water-steam interface.Herein,we present a new type of scalable and recyclable arch bridge photothermal fabric with efficient warp-direction water paths by a convenient shuttle-flying weaving technique.Compared to the previous overall layer-by-layer assembled fabric,our photothermal fabric precisely constructed effective water paths and achieved excellent water-heat distribution at the solar evaporation interface,which greatly improved the photothermal conversion efficiency and evaporation rate.By the design of the weaving process,the photothermal fabric shows a new interface contact mode of the water path fiber and polyaniline photothermal fiber.Besides,the arch-bridge type design not only minimizes heat loss area but also enhances the water evaporation area,resulting in high-efficiency all-weather available solar water evaporation.Furthermore,the results show that the temperature,evaporation rate and solar-vapor conversion efficiency of photothermal fabric can reach above 123℃,2.31 kg m^(-2)h^(-1)and 99.93%under a solar illumination of 1 kW m^(-2).The arch-bridge photo-thermal fabric with an excellent water evaporation rate has been successfully established,which provides a new paradigm for improving the sustainable seawater desalination rate.