The wear patterns and wear mechanisms of solid cemented carbide are analyzed in high-speed milling of aluminum alloy. Results show that the dominant wear patterns are coating damage, crater wear, micro-chipping, break...The wear patterns and wear mechanisms of solid cemented carbide are analyzed in high-speed milling of aluminum alloy. Results show that the dominant wear patterns are coating damage, crater wear, micro-chipping, breakage, and so on. The main wear mechanisms are adhesion, diffusion and fatigue. Compared with conventional speed machining, the effect and impact of thermal-dynamical coupling field play an important role in the cutting tool wear in high-speed milling of aluminum alloy.展开更多
A method to determine muzzle velocity loss according to the actual measured bore wear pattern is proposed.Therefore,it is unnecessary to conduct live firing and other experiments for determination of muzzle velocity l...A method to determine muzzle velocity loss according to the actual measured bore wear pattern is proposed.Therefore,it is unnecessary to conduct live firing and other experiments for determination of muzzle velocity loss.It has been applied to a national military standard since July 1,2004.展开更多
The ultra-precision machining process using a single crystal diamond tool has been mainly used for machining molds of optical components.Since the micro patterns of various shapes having excellent surface roughness ca...The ultra-precision machining process using a single crystal diamond tool has been mainly used for machining molds of optical components.Since the micro patterns of various shapes having excellent surface roughness can be machined by using ultra-precision machine tools,the micro pattern on a large light guide plate (LGP) is mainly machined using a diamond tool.The tool wear occurs due to long machining distances and time while machining a large-area LGP mold.The deformation and dimensional error of micro pattern are caused by tool wear,as a result,the light efficiency of LGP declines.The characteristics of tool wear should be analyzed in order to precisely machine large-area LGP mold from all sorts of materials.The experiments were performed in order to compare wear characteristics of a V90° diamond tool using Al3003,5052,6061 and 7075.The prism pattern of depth 10 μm was machined in order to analyze characteristics of tool wear according to machining distances (0.5,1 and 1.5 km).The effects of tool wear on pattern shape were analyzed by applying overlapped cutting depths (Rough machining is (10+8+7) μm and Finish machining is (5+3+2+1) μm) by continuously machining a prism pattern of W shape of 25 μm in depth.展开更多
Laser gas nitriding (LGN) is a common surface modification method to enhance the wear resistance of titanium (Ti) alloys, which are known to have poor tribological properties. In the present study, a titanium nitr...Laser gas nitriding (LGN) is a common surface modification method to enhance the wear resistance of titanium (Ti) alloys, which are known to have poor tribological properties. In the present study, a titanium nitride (TIN) grid network was fabricated on the surface of nickel titanium (NiTi) by LGN. The laser processing parameters were selected to achieve nitriding without surface melting and hence to'maintain a smooth surface finish. The characteristics of the grid-nitrided samples were investigated by scanningelectron microscopy, X-ray diffractometry, optical microscopy, 2-D profilometry, contact angle measurements and nanoindentation. The wear resistance of the nitrided samples was evaluated using reciprocating wear test against ultra-high-molecular-weight polyethylene (UHMWPE) in Hanks' solution. The results indicate that the wear rates of the grid-nitrided samples and the UHMWPE counter-body in the wear pair are both significantly reduced. The decrease in wear rates can be attributed to the combination of a hard TiN grid and a soft NiTi substrate. In Hanks' solution, the higher hydrophilicity of the nitrided samples also contributes to the better performance in wear test against hydrophobic UHMWPE.展开更多
Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accum...Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accumulation of lubricant in front of patterned islandic spots creates thrusting to mating part and subsequently reduces contact between the mating couple. Whilst wear debris is likely to be spun off the plateau of the spots to their neighbouring valleys so as to reduce wear. Hence, it gives favorable tribological characteristics. Aiming at verifying such mechanisms, studies were performed on M2 steel disc specimens slid with ASSAB 17 tool steel pin. The M2 steel disc specimens were respectively (i) machined with non-patterned (NP), (ii) etched to produce in-lined (INE) islandic patterns, and (iii) etched to produce staggered (STE) islandic spot patterns. Results indicated that the INE patterned discs gave most favorable wear characteristics, the NP of the worse characteristics whilst the STE ranged in the middle. However, the actual contact mechanism leads to the descending sequence of favorable friction behaviors nominally as: NP, INE and STE.展开更多
文摘The wear patterns and wear mechanisms of solid cemented carbide are analyzed in high-speed milling of aluminum alloy. Results show that the dominant wear patterns are coating damage, crater wear, micro-chipping, breakage, and so on. The main wear mechanisms are adhesion, diffusion and fatigue. Compared with conventional speed machining, the effect and impact of thermal-dynamical coupling field play an important role in the cutting tool wear in high-speed milling of aluminum alloy.
文摘A method to determine muzzle velocity loss according to the actual measured bore wear pattern is proposed.Therefore,it is unnecessary to conduct live firing and other experiments for determination of muzzle velocity loss.It has been applied to a national military standard since July 1,2004.
文摘The ultra-precision machining process using a single crystal diamond tool has been mainly used for machining molds of optical components.Since the micro patterns of various shapes having excellent surface roughness can be machined by using ultra-precision machine tools,the micro pattern on a large light guide plate (LGP) is mainly machined using a diamond tool.The tool wear occurs due to long machining distances and time while machining a large-area LGP mold.The deformation and dimensional error of micro pattern are caused by tool wear,as a result,the light efficiency of LGP declines.The characteristics of tool wear should be analyzed in order to precisely machine large-area LGP mold from all sorts of materials.The experiments were performed in order to compare wear characteristics of a V90° diamond tool using Al3003,5052,6061 and 7075.The prism pattern of depth 10 μm was machined in order to analyze characteristics of tool wear according to machining distances (0.5,1 and 1.5 km).The effects of tool wear on pattern shape were analyzed by applying overlapped cutting depths (Rough machining is (10+8+7) μm and Finish machining is (5+3+2+1) μm) by continuously machining a prism pattern of W shape of 25 μm in depth.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.PolyU524210E)
文摘Laser gas nitriding (LGN) is a common surface modification method to enhance the wear resistance of titanium (Ti) alloys, which are known to have poor tribological properties. In the present study, a titanium nitride (TIN) grid network was fabricated on the surface of nickel titanium (NiTi) by LGN. The laser processing parameters were selected to achieve nitriding without surface melting and hence to'maintain a smooth surface finish. The characteristics of the grid-nitrided samples were investigated by scanningelectron microscopy, X-ray diffractometry, optical microscopy, 2-D profilometry, contact angle measurements and nanoindentation. The wear resistance of the nitrided samples was evaluated using reciprocating wear test against ultra-high-molecular-weight polyethylene (UHMWPE) in Hanks' solution. The results indicate that the wear rates of the grid-nitrided samples and the UHMWPE counter-body in the wear pair are both significantly reduced. The decrease in wear rates can be attributed to the combination of a hard TiN grid and a soft NiTi substrate. In Hanks' solution, the higher hydrophilicity of the nitrided samples also contributes to the better performance in wear test against hydrophobic UHMWPE.
基金the National Natural Science Foundation of China(No. 50575173).
文摘Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accumulation of lubricant in front of patterned islandic spots creates thrusting to mating part and subsequently reduces contact between the mating couple. Whilst wear debris is likely to be spun off the plateau of the spots to their neighbouring valleys so as to reduce wear. Hence, it gives favorable tribological characteristics. Aiming at verifying such mechanisms, studies were performed on M2 steel disc specimens slid with ASSAB 17 tool steel pin. The M2 steel disc specimens were respectively (i) machined with non-patterned (NP), (ii) etched to produce in-lined (INE) islandic patterns, and (iii) etched to produce staggered (STE) islandic spot patterns. Results indicated that the INE patterned discs gave most favorable wear characteristics, the NP of the worse characteristics whilst the STE ranged in the middle. However, the actual contact mechanism leads to the descending sequence of favorable friction behaviors nominally as: NP, INE and STE.