When the U.S.Federal Communications Commission voted on August 7 to approve new submarine cable regulations,the world witnessed a danger-ous turning point:Critical infrastructure is being transformed from a global pub...When the U.S.Federal Communications Commission voted on August 7 to approve new submarine cable regulations,the world witnessed a danger-ous turning point:Critical infrastructure is being transformed from a global public good into a geopolitical weapon.The new regula-tions,which ban companies linked to China,Russia and other“foreign adversaries”from submarine cable projects connecting to the U.S.,are not merely an update to technical regulatory policy-they're Washington's latest move in a systematic effort to reshape the global maritime order.展开更多
The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.Howe...The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.展开更多
Protecting human rights is a noble ideal enshrined in the Universal Declaration of Human Rights.For an extended period,the United States has positioned itself as a"defender"of this cause,politicizing,weaponi...Protecting human rights is a noble ideal enshrined in the Universal Declaration of Human Rights.For an extended period,the United States has positioned itself as a"defender"of this cause,politicizing,weaponizing,and instrumentalizing human rights issues to criticize and discredit other countries.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
Lethal autonomous weapon systems(LAWS)have become a prominent issue in global security governance.However,significant divergences remain among the world's major countries regarding their regulation:some support re...Lethal autonomous weapon systems(LAWS)have become a prominent issue in global security governance.However,significant divergences remain among the world's major countries regarding their regulation:some support restrictions,while others oppose any binding rules,and there are also countries adopting a neutral stance,though their choices are subject to external pressure.In the foreseeable future,the deployment of LAWS will increase further,raising the risk of arms races,with international support for regulating these weapons gaining strength.Yet,establishing legally binding international rules within the United Nations(UN)framework remains a distant prospect.Given this backdrop,China should continue to actively participate in international norms setting concerning LAWS under UN auspices and deepen coordination and cooperation with other countries towards more applicable norms and global governance frameworks.展开更多
1.Introduction Infrared Imaging Missiles(IRIMs)are advanced weapons utilizing infrared technology for target detection and tracking.Their sensors capture thermal signatures and convert them into electronic images,enab...1.Introduction Infrared Imaging Missiles(IRIMs)are advanced weapons utilizing infrared technology for target detection and tracking.Their sensors capture thermal signatures and convert them into electronic images,enabling precise target identification and tracking.To a certain extent,the all-weather adaptability of IRIMs enables their effective operation across diverse environmental conditions,providing high targeting accuracy and cost efficiency.展开更多
Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a v...Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser.展开更多
The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic pro...The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic properties of the base of the weapon,did not allow to reconcile the calculated and experimental results of the weapon casing displacement when shooting from firing rests.For the analysis of the motion of individual parts,the methods of mathematical modelling and firing experiments using a high-speed camera were chosen.Calculations show the best accord with experiment when modelling the system with 4 degrees of freedom.The oscillation of the system regarding the movement of the breech block carrier and the weapon casing was investigated under changed conditions of rate of fire,the use of a muzzle brake and different types of shock absorbers.The velocities and displacements of the weapon casing and the breech block carrier at different values of the impulse of the gases to the breech block carrier were determined.展开更多
Aiming at the characteristics of multi-stage and(extremely)small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems(WESoS),a Bayesian intelligent identification an...Aiming at the characteristics of multi-stage and(extremely)small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems(WESoS),a Bayesian intelligent identification and inference model for system effectiveness assessment indexes based on dynamic grey incidence is proposed.The method uses multi-layer Bayesian techniques,makes full use of historical statistics and empirical information,and determines the Bayesian estima-tion of the incidence degree of indexes,which effectively solves the difficulties of small sample size of effectiveness indexes and difficulty in obtaining incidence rules between indexes.Sec-ondly,The method quantifies the incidence relationship between evaluation indexes and combat effectiveness based on Bayesian posterior grey incidence,and then identifies key system effec-tiveness evaluation indexes.Finally,the proposed method is applied to a case of screening key effectiveness indexes of a missile defensive system,and the analysis results show that the proposed method can fuse multi-moment information and extract multi-stage key indexes,and has good data extraction capability in the case of small samples.展开更多
As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilienc...As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS.First,a unified resilience-driven coopera-tive reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement.Subsequently,a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence,combining the cooperative pair resilience contribution index(CPRCI)and coop-erative pair importance index(CPII).At last,the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include differ-ent attack modes and intensities.The analysis results can pro-vide a reference for decision-makers to manage UWSoS.展开更多
The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challen...The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.展开更多
In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is p...In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is proposed.Firstly,we introduce the concept of probability and fuzzy entropy to mea-sure the ambiguity,hesitation and uncertainty of probabilistic hesitant fuzzy elements(PHFEs).Sequentially,the expert trust network is constructed,and the importance of each expert in the network can be obtained by calculating the cumulative trust value under multiple trust propagation paths,so as to obtain the expert weight vector.Finally,we put forward an MADM method combining the probabilistic hesitant fuzzy entropy and grey rela-tion analysis(GRA)model,and an illustrative case is employed to prove the feasibility and effectiveness of the method when solving the weapon system selection decision-making problem.展开更多
The rise of hypersonic weapons,capable of traveling at speeds exceeding Mach 5 with unparalleled maneuverability,represents a transformative shift in modern warfare.These weapons,including HGVs(hypersonic glide vehicl...The rise of hypersonic weapons,capable of traveling at speeds exceeding Mach 5 with unparalleled maneuverability,represents a transformative shift in modern warfare.These weapons,including HGVs(hypersonic glide vehicles)and HCMs(hypersonic cruise missiles),challenge traditional defense systems due to their stealth-like speed,unpredictable flight paths,and low-altitude trajectories.Their ability to compress decision-making windows and evade conventional radar systems has sparked a global arms race,creating a critical need for advanced countermeasures.AI(artificial intelligence)emerges as a revolutionary solution to counter the stealth and speed of hypersonic threats.By leveraging AI-driven detection,tracking,and interception systems,defense mechanisms can overcome the limitations of conventional technology.AI enhances early detection through multi-sensor fusion,real-time data processing,and predictive modeling of hypersonic trajectories.It also facilitates the development of precision-guided interceptors and advanced systems like DEWs(directed energy weapons),offering effective avenues for neutralizing these fast-moving threats.Despite its promise,AI integration into hypersonic defense systems faces challenges,including data bias,cybersecurity risks,and potential escalation of conflicts.Ethical considerations and global collaboration are essential to address these concerns and ensure responsible deployment.As hypersonic weapons redefine the battlefield,AI stands as the linchpin for a robust,resilient,and future-proof defense strategy.This article explores the intersection of hypersonic technologies and AI,providing insights into how intelligent systems can safeguard global security against these next-generation threats.展开更多
[Objective] The aim was to analyze risks of transgenic technology. [Method] Discussions on risks of transgenic technologies were conducted from perspective of philosophy. [Result] Mechanistic philosophy and reductioni...[Objective] The aim was to analyze risks of transgenic technology. [Method] Discussions on risks of transgenic technologies were conducted from perspective of philosophy. [Result] Mechanistic philosophy and reductionism are causes of reflection on risks of transgenic technology. Considering transgene is an artificial choice taking place of natural choice, it is inevitable for risks of transgenic technology to be found. In addition, social system constitutes the root for out-of-control of transgenic technology, hence, mechanism risk is the primary cause of transgenic risks. [Conclusion] It is inescapable for science view to be changed from arbitrary and lopsided to reflective and comprehensive and for technology view to be changed from exterminative and genesic to protective and symbiotic.展开更多
N,N-dialkylaminoethane-2-sulfonic acids are environmental marker compounds of V type nerve agents,hence analysis of them is very important for verification of the chemical weapons convention(CWC).In this article,liqui...N,N-dialkylaminoethane-2-sulfonic acids are environmental marker compounds of V type nerve agents,hence analysis of them is very important for verification of the chemical weapons convention(CWC).In this article,liquid chromatography-high resolution time of flight mass spectrometry coupled with accurate mass measurement were used to discriminate N,N-disopropyl aminoethane-2-sulfonic acid and a CWC non-related compound 3-(N-Morpholino)propanesulfonic acid in Water.The method was fast,simple and accurate,proving that high resolution mass spectrometry is a good technique for the analysis of unknown toxicant.展开更多
The laser technology has made remarkable progress over the past couple of decades.It is being widely employed in diverse domains,such as holography,space sciences,spectroscopy,medical sciences,micro and power electron...The laser technology has made remarkable progress over the past couple of decades.It is being widely employed in diverse domains,such as holography,space sciences,spectroscopy,medical sciences,micro and power electronics,industrial engineering,and most distinctively,as directed energy military weapons.Owing to their active transmissions,laser systems are similar to microwave radars to some extent;however,unlike conventional radars,the laser operates at very high frequencies thus making it a potent enabler of narrow-beam and high energy aerial deployments,both in offensive and defensive roles.In modern avionics systems,laser target indicators and beam riders are the most common devices that are used to direct the Laser Guided Weapons(LGW)accurately to the ground targets.Additionally,compact size and outstanding angular resolution of laser-based systems motivate their use for drones and unmanned aerial applications.Moreover,the narrow-beam divergence of laser emissions offers a low probability of intercept,making it a suitable contender for secure transmissions and safety-critical operations.Furthermore,the developments in space sciences and laser technology have given synergistic potential outcomes to use laser systems in space operations.This paper comprehensively reviews laser applications and projects for strategic defense actions on the ground or in space.Additionally,a detailed analysis has been done on recent advancements of the laser technology for target indicators and range-finders.It also reviews the advancements in the field of laser communications for surveillance,its earlier state of the art,and ongoing scientific research and advancements in the domain of high energy directed laser weapons that have revolutionized the evolving military battlefield.Besides offering a comprehensive taxonomy,the paper also critically analyzes some of the recent contributions in the associated domains.展开更多
The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indic...The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indicators to evaluate the role of a system,which can facilitate the weapons system portfolio selection.Therefore,combining the system contribution rate with system portfolio selection is the focus of this study.It also focuses on calculating the contribution rates of multiple equipment systems with various types of capabilities.The contribution rate is measured by establishing a hierarchical multi-criteria value model from three dimensions.Based on the value model,the feasible portfolios are developed under certain cost constraints and the optimal weapons system portfolios are obtained by using the classification optimization selection strategy.Finally,an illustrative example is presented to verify the feasibility of the proposed model.展开更多
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we...A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.展开更多
文摘When the U.S.Federal Communications Commission voted on August 7 to approve new submarine cable regulations,the world witnessed a danger-ous turning point:Critical infrastructure is being transformed from a global public good into a geopolitical weapon.The new regula-tions,which ban companies linked to China,Russia and other“foreign adversaries”from submarine cable projects connecting to the U.S.,are not merely an update to technical regulatory policy-they're Washington's latest move in a systematic effort to reshape the global maritime order.
基金supported by the National Social Science Foundation of China(2022-SKJJ-C-037)the National Natural Science Foundation of China General Program(72071209).
文摘The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.
文摘Protecting human rights is a noble ideal enshrined in the Universal Declaration of Human Rights.For an extended period,the United States has positioned itself as a"defender"of this cause,politicizing,weaponizing,and instrumentalizing human rights issues to criticize and discredit other countries.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
文摘Lethal autonomous weapon systems(LAWS)have become a prominent issue in global security governance.However,significant divergences remain among the world's major countries regarding their regulation:some support restrictions,while others oppose any binding rules,and there are also countries adopting a neutral stance,though their choices are subject to external pressure.In the foreseeable future,the deployment of LAWS will increase further,raising the risk of arms races,with international support for regulating these weapons gaining strength.Yet,establishing legally binding international rules within the United Nations(UN)framework remains a distant prospect.Given this backdrop,China should continue to actively participate in international norms setting concerning LAWS under UN auspices and deepen coordination and cooperation with other countries towards more applicable norms and global governance frameworks.
基金co-supported by the China Postdoctoral Science Foundation(No.2024M754304)the Hunan Provincial Natural Science Foundation of China(No.2025JJ60072)。
文摘1.Introduction Infrared Imaging Missiles(IRIMs)are advanced weapons utilizing infrared technology for target detection and tracking.Their sensors capture thermal signatures and convert them into electronic images,enabling precise target identification and tracking.To a certain extent,the all-weather adaptability of IRIMs enables their effective operation across diverse environmental conditions,providing high targeting accuracy and cost efficiency.
基金National Natural Science Foundation of China(Grant Nos.62005276,62175234)the Scientific and Technological Development Program of Jilin,China(Grant No.20230508111RC)to provide fund for this research。
文摘Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser.
基金supported by the Research project VAROPS(Military autonomous and robotic assets)of the Ministry of Defence of The Czech Republicby the Specific Research Support Project(Grant No.SV22-201)financed from funds of the Ministry of Education,Youth and Sports of The Czech Republic。
文摘The article deals with the motion of the breech block carrier and the weapon casing of an automatic weapon mounted on a flexible carriage and the base of the weapon.Earlier works,which did not consider the dynamic properties of the base of the weapon,did not allow to reconcile the calculated and experimental results of the weapon casing displacement when shooting from firing rests.For the analysis of the motion of individual parts,the methods of mathematical modelling and firing experiments using a high-speed camera were chosen.Calculations show the best accord with experiment when modelling the system with 4 degrees of freedom.The oscillation of the system regarding the movement of the breech block carrier and the weapon casing was investigated under changed conditions of rate of fire,the use of a muzzle brake and different types of shock absorbers.The velocities and displacements of the weapon casing and the breech block carrier at different values of the impulse of the gases to the breech block carrier were determined.
基金supported by the National Natural Science Foundation of China(72271124,72071111).
文摘Aiming at the characteristics of multi-stage and(extremely)small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems(WESoS),a Bayesian intelligent identification and inference model for system effectiveness assessment indexes based on dynamic grey incidence is proposed.The method uses multi-layer Bayesian techniques,makes full use of historical statistics and empirical information,and determines the Bayesian estima-tion of the incidence degree of indexes,which effectively solves the difficulties of small sample size of effectiveness indexes and difficulty in obtaining incidence rules between indexes.Sec-ondly,The method quantifies the incidence relationship between evaluation indexes and combat effectiveness based on Bayesian posterior grey incidence,and then identifies key system effec-tiveness evaluation indexes.Finally,the proposed method is applied to a case of screening key effectiveness indexes of a missile defensive system,and the analysis results show that the proposed method can fuse multi-moment information and extract multi-stage key indexes,and has good data extraction capability in the case of small samples.
基金This work was supported by Ph.D.Intelligent Innovation Foundation Project(201-CXCY-A01-08-19-01)Science and Technology on Information System Engineering Laboratory(05202007).
文摘As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS.First,a unified resilience-driven coopera-tive reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement.Subsequently,a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence,combining the cooperative pair resilience contribution index(CPRCI)and coop-erative pair importance index(CPII).At last,the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include differ-ent attack modes and intensities.The analysis results can pro-vide a reference for decision-makers to manage UWSoS.
文摘The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.
基金supported by the National Natural Science Foundation of China(71901214).
文摘In order to solve the problem of uncertainty and fuzzy information in the process of weapon equipment system selec-tion,a multi-attribute decision-making(MADM)method based on probabilistic hesitant fuzzy set(PHFS)is proposed.Firstly,we introduce the concept of probability and fuzzy entropy to mea-sure the ambiguity,hesitation and uncertainty of probabilistic hesitant fuzzy elements(PHFEs).Sequentially,the expert trust network is constructed,and the importance of each expert in the network can be obtained by calculating the cumulative trust value under multiple trust propagation paths,so as to obtain the expert weight vector.Finally,we put forward an MADM method combining the probabilistic hesitant fuzzy entropy and grey rela-tion analysis(GRA)model,and an illustrative case is employed to prove the feasibility and effectiveness of the method when solving the weapon system selection decision-making problem.
文摘The rise of hypersonic weapons,capable of traveling at speeds exceeding Mach 5 with unparalleled maneuverability,represents a transformative shift in modern warfare.These weapons,including HGVs(hypersonic glide vehicles)and HCMs(hypersonic cruise missiles),challenge traditional defense systems due to their stealth-like speed,unpredictable flight paths,and low-altitude trajectories.Their ability to compress decision-making windows and evade conventional radar systems has sparked a global arms race,creating a critical need for advanced countermeasures.AI(artificial intelligence)emerges as a revolutionary solution to counter the stealth and speed of hypersonic threats.By leveraging AI-driven detection,tracking,and interception systems,defense mechanisms can overcome the limitations of conventional technology.AI enhances early detection through multi-sensor fusion,real-time data processing,and predictive modeling of hypersonic trajectories.It also facilitates the development of precision-guided interceptors and advanced systems like DEWs(directed energy weapons),offering effective avenues for neutralizing these fast-moving threats.Despite its promise,AI integration into hypersonic defense systems faces challenges,including data bias,cybersecurity risks,and potential escalation of conflicts.Ethical considerations and global collaboration are essential to address these concerns and ensure responsible deployment.As hypersonic weapons redefine the battlefield,AI stands as the linchpin for a robust,resilient,and future-proof defense strategy.This article explores the intersection of hypersonic technologies and AI,providing insights into how intelligent systems can safeguard global security against these next-generation threats.
文摘[Objective] The aim was to analyze risks of transgenic technology. [Method] Discussions on risks of transgenic technologies were conducted from perspective of philosophy. [Result] Mechanistic philosophy and reductionism are causes of reflection on risks of transgenic technology. Considering transgene is an artificial choice taking place of natural choice, it is inevitable for risks of transgenic technology to be found. In addition, social system constitutes the root for out-of-control of transgenic technology, hence, mechanism risk is the primary cause of transgenic risks. [Conclusion] It is inescapable for science view to be changed from arbitrary and lopsided to reflective and comprehensive and for technology view to be changed from exterminative and genesic to protective and symbiotic.
文摘N,N-dialkylaminoethane-2-sulfonic acids are environmental marker compounds of V type nerve agents,hence analysis of them is very important for verification of the chemical weapons convention(CWC).In this article,liquid chromatography-high resolution time of flight mass spectrometry coupled with accurate mass measurement were used to discriminate N,N-disopropyl aminoethane-2-sulfonic acid and a CWC non-related compound 3-(N-Morpholino)propanesulfonic acid in Water.The method was fast,simple and accurate,proving that high resolution mass spectrometry is a good technique for the analysis of unknown toxicant.
文摘The laser technology has made remarkable progress over the past couple of decades.It is being widely employed in diverse domains,such as holography,space sciences,spectroscopy,medical sciences,micro and power electronics,industrial engineering,and most distinctively,as directed energy military weapons.Owing to their active transmissions,laser systems are similar to microwave radars to some extent;however,unlike conventional radars,the laser operates at very high frequencies thus making it a potent enabler of narrow-beam and high energy aerial deployments,both in offensive and defensive roles.In modern avionics systems,laser target indicators and beam riders are the most common devices that are used to direct the Laser Guided Weapons(LGW)accurately to the ground targets.Additionally,compact size and outstanding angular resolution of laser-based systems motivate their use for drones and unmanned aerial applications.Moreover,the narrow-beam divergence of laser emissions offers a low probability of intercept,making it a suitable contender for secure transmissions and safety-critical operations.Furthermore,the developments in space sciences and laser technology have given synergistic potential outcomes to use laser systems in space operations.This paper comprehensively reviews laser applications and projects for strategic defense actions on the ground or in space.Additionally,a detailed analysis has been done on recent advancements of the laser technology for target indicators and range-finders.It also reviews the advancements in the field of laser communications for surveillance,its earlier state of the art,and ongoing scientific research and advancements in the domain of high energy directed laser weapons that have revolutionized the evolving military battlefield.Besides offering a comprehensive taxonomy,the paper also critically analyzes some of the recent contributions in the associated domains.
基金supported by the National Key R&D Program of China(2017YFC1405005)the National Natural Science Foundation of China(71690233)
文摘The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indicators to evaluate the role of a system,which can facilitate the weapons system portfolio selection.Therefore,combining the system contribution rate with system portfolio selection is the focus of this study.It also focuses on calculating the contribution rates of multiple equipment systems with various types of capabilities.The contribution rate is measured by establishing a hierarchical multi-criteria value model from three dimensions.Based on the value model,the feasible portfolios are developed under certain cost constraints and the optimal weapons system portfolios are obtained by using the classification optimization selection strategy.Finally,an illustrative example is presented to verify the feasibility of the proposed model.
文摘A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.