In this paper, we shall introduce and characterize simultaneous quasi-Chebyshev (and weakly-Chebyshev) subspaces of normed spaces with respect to a bounded set S by using elements of the dual space.
We assume that X is a normed linear space, W and M are subspaces of X. We develop a theory of best simultaneous approximation in quotient spaces and introduce equivalent assertions between the subspaces W and W + M a...We assume that X is a normed linear space, W and M are subspaces of X. We develop a theory of best simultaneous approximation in quotient spaces and introduce equivalent assertions between the subspaces W and W + M and the quotient space W/M.展开更多
文摘In this paper, we shall introduce and characterize simultaneous quasi-Chebyshev (and weakly-Chebyshev) subspaces of normed spaces with respect to a bounded set S by using elements of the dual space.
文摘We assume that X is a normed linear space, W and M are subspaces of X. We develop a theory of best simultaneous approximation in quotient spaces and introduce equivalent assertions between the subspaces W and W + M and the quotient space W/M.