In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can...In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can provide a more reliable approach in these situations.Current popular approaches mainly adopt the classification-based class activation maps(CAM)as initial pseudo labels to solve the task.展开更多
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
Background:Image-based automatic diagnosis of field diseases can help increase crop yields and is of great importance.However,crop lesion regions tend to be scattered and of varying sizes,this along with substantial i...Background:Image-based automatic diagnosis of field diseases can help increase crop yields and is of great importance.However,crop lesion regions tend to be scattered and of varying sizes,this along with substantial intraclass variation and small inter-class variation makes segmentation difficult.Methods:We propose a novel end-to-end system that only requires weak supervision of image-level labels for lesion region segmentation.First,a two-branch network is designed for joint disease classification and seed region generation.The generated seed regions are then used as input to the next segmentation stage where we design to use an encoder-decoder network.Different from previous works that use an encoder in the segmentation network,the encoder-decoder network is critical for our system to successfully segment images with small and scattered regions,which is the major challenge in image-based diagnosis of field diseases.We further propose a novel weakly supervised training strategy for the encoder-decoder semantic segmentation network,making use of the extracted seed regions.Results:Experimental results show that our system achieves better lesion region segmentation results than state of the arts.In addition to crop images,our method is also applicable to general scattered object segmentation.We demonstrate this by extending our framework to work on the PASCAL VOC dataset,which achieves comparable performance with the state-of-the-art DSRG(deep seeded region growing)method.Conclusion:Our method not only outperforms state-of-the-art semantic segmentation methods by a large margin for the lesion segmentation task,but also shows its capability to perform well on more general tasks.展开更多
Laser speckle contrast imaging(LSCI)is a noninvasive,label-free technique that allows real-time investigation of the microcirculation situation of biological tissue.High-quality microvascular segmentation is critical ...Laser speckle contrast imaging(LSCI)is a noninvasive,label-free technique that allows real-time investigation of the microcirculation situation of biological tissue.High-quality microvascular segmentation is critical for analyzing and evaluating vascular morphology and blood flow dynamics.However,achieving high-quality vessel segmentation has always been a challenge due to the cost and complexity of label data acquisition and the irregular vascular morphology.In addition,supervised learning methods heavily rely on high-quality labels for accurate segmentation results,which often necessitate extensive labeling efforts.Here,we propose a novel approach LSWDP for high-performance real-time vessel segmentation that utilizes low-quality pseudo-labels for nonmatched training without relying on a substantial number of intricate labels and image pairing.Furthermore,we demonstrate that our method is more robust and effective in mitigating performance degradation than traditional segmentation approaches on diverse style data sets,even when confronted with unfamiliar data.Importantly,the dice similarity coefficient exceeded 85%in a rat experiment.Our study has the potential to efficiently segment and evaluate blood vessels in both normal and disease situations.This would greatly benefit future research in life and medicine.展开更多
Due to the lack of annotations in target bounding boxes,most methods for weakly supervised target detection transform the problem of object detection into a classification problem of candidate regions,making it easy f...Due to the lack of annotations in target bounding boxes,most methods for weakly supervised target detection transform the problem of object detection into a classification problem of candidate regions,making it easy for weakly supervised target detectors to locate significant and highly discriminative local areas of objects.We propose a weak monitoring method that combines attention and erasure mechanisms.The supervised target detection method uses attention maps to search for areas with higher discrimination within candidate regions,and then uses an erasure mechanism to erase the region,forcing the model to enhance its learning of features in areas with weaker discrimination.To improve the positioning ability of the detector,we cascade the weakly supervised target detection network and the fully supervised target detection network,and jointly train the weakly supervised target detection network and the fully supervised target detection network through multi-task learning.Based on the validation trials,the category mean average precision(mAP)and the correct localization(CorLoc)on the two datasets,i.e.,VOC2007 and VOC2012,are 55.2% and 53.8%,respectively.In regard to the mAP and CorLoc,this approach significantly outperforms previous approaches,which creates opportunities for additional investigations into weakly supervised target identification algorithms.展开更多
Training with confident positive-labeled instances has received a lot of attention in Positive and Unlabeled(PU)learning tasks,and this is formally termed“Instance-Dependent PU learning”.In instance-dependent PU lea...Training with confident positive-labeled instances has received a lot of attention in Positive and Unlabeled(PU)learning tasks,and this is formally termed“Instance-Dependent PU learning”.In instance-dependent PU learning,whether a positive instance is labeled depends on its labeling confidence.In other words,it is assumed that not all positive instances have the same probability to be included by the positive set.Instead,the instances that are far from the potential decision boundary are with larger probability to be labeled than those that are close to the decision boundary.This setting has practical importance in many real-world applications such as medical diagnosis,outlier detection,object detection,etc.In this survey,we first present the preliminary knowledge of PU learning,and then review the representative instance-dependent PU learning settings and methods.After that,we thoroughly compare them with typical PU learning methods on various benchmark datasets and analyze their performances.Finally,we discuss the potential directions for future research.展开更多
Action recognition and localization in untrimmed videos is important for many applications and have attracted a lot of attention. Since full supervision with frame-level annotation places an overwhelming burden on man...Action recognition and localization in untrimmed videos is important for many applications and have attracted a lot of attention. Since full supervision with frame-level annotation places an overwhelming burden on manual labeling effort, learning with weak video-level supervision becomes a potential solution. In this paper, we propose a novel weakly supervised framework to recognize actions and locate the corresponding frames in untrimmed videos simultaneously. Considering that there are abundant trimmed videos publicly available and well-segmented with semantic descriptions, the instructive knowledge learned on trimmed videos can be fully leveraged to analyze untrimmed videos. We present an effective knowledge transfer strategy based on inter-class semantic relevance. We also take advantage of the self-attention mechanism to obtain a compact video representation, such that the influence of background frames can be effectively eliminated. A learning architecture is designed with twin networks for trimmed and untrimmed videos, to facilitate transferable self-attentive representation learning. Extensive experiments are conducted on three untrimmed benchmark datasets (i.e., THUMOS14, ActivityNet1.3, and MEXaction2), and the experimental results clearly corroborate the efficacy of our method. It is especially encouraging to see that the proposed weakly supervised method even achieves comparable results to some fully supervised methods.展开更多
Anticipating future actions without observing any partial videos of future actions plays an important role in action prediction and is also a challenging task.To obtain abundant information for action anticipation,som...Anticipating future actions without observing any partial videos of future actions plays an important role in action prediction and is also a challenging task.To obtain abundant information for action anticipation,some methods integrate multimodal contexts,including scene object labels.However,extensively labelling each frame in video datasets requires considerable effort.In this paper,we develop a weakly supervised method that integrates global motion and local finegrained features from current action videos to predict next action label without the need for specific scene context labels.Specifically,we extract diverse types of local features with weakly supervised learning,including object appearance and human pose representations without ground truth.Moreover,we construct a graph convolutional network for exploiting the inherent relationships of humans and objects under present incidents.We evaluate the proposed model on two datasets,the MPII-Cooking dataset and the EPIC-Kitchens dataset,and we demonstrate the generalizability and effectiveness of our approach for action anticipation.展开更多
Large-scale datasets are driving the rapid developments of deep convolutional neural networks for visual sentiment analysis.However,the annotation of large-scale datasets is expensive and time consuming.Instead,it ise...Large-scale datasets are driving the rapid developments of deep convolutional neural networks for visual sentiment analysis.However,the annotation of large-scale datasets is expensive and time consuming.Instead,it iseasy to obtain weakly labeled web images from the Internet.However,noisy labels st.ill lead to seriously degraded performance when we use images directly from the web for training networks.To address this drawback,we propose an end-to-end weakly supervised learning network,which is robust to mislabeled web images.Specifically,the proposed attention module automatically eliminates the distraction of those samples with incorrect labels bv reducing their attention scores in the training process.On the other hand,the special-class activation map module is designed to stimulate the network by focusing on the significant regions from the samples with correct labels in a weakly supervised learning approach.Besides the process of feature learning,applying regularization to the classifier is considered to minimize the distance of those samples within the same class and maximize the distance between different class centroids.Quantitative and qualitative evaluations on well-and mislabeled web image datasets demonstrate that the proposed algorithm outperforms the related methods.展开更多
Accurate prognosis prediction is essential for guiding cancer treatment and improving patient outcomes.While recent studies have demonstrated the potential of histopathological images in survival analysis,existing mod...Accurate prognosis prediction is essential for guiding cancer treatment and improving patient outcomes.While recent studies have demonstrated the potential of histopathological images in survival analysis,existing models are typically developed in a cancerspecific manner,lack extensive external validation,and often rely on molecular data that are not routinely available in clinical practice.To address these limitations,we present PROGPATH,a unified model capable of integrating histopathological image features with routinely collected clinical variables to achieve pancancer prognosis prediction.PROGPATH employs a weakly supervised deep learning architecture built upon the foundation model for image encoding.Morphological features are aggregated through an attention-guided multiple instance learning module and fused with clinical information via a cross-attention transformer.A router-based classification strategy further refines the prediction performance.PROGPATH was trained on 7999 whole-slide images(WSIs)from 6,670 patients across 15 cancer types,and extensively validated on 17 external cohorts with a total of 7374 WSIs from 4441 patients,covering 12 cancer types from 8 consortia and institutions across three continents.PROGPATH achieved consistently superior performance compared with state-of-the-art multimodal prognosis prediction models.It demonstrated strong generalizability across cancer types and robustness in stratified subgroups,including early-and advancedstage patients,treatment cohorts(radiotherapy and pharmaceutical therapy),and biomarker-defined subsets.We further provide model interpretability by identifying pathological patterns critical to PROGPATH’s risk predictions,such as the degree of cell differentiation and extent of necrosis.Together,these results highlight the potential of PROGPATH to support pancancer outcome prediction and inform personalized cancer management strategies.展开更多
Segmenting dark-field images of laser-induced damage on large-aperture optics in high-power laser facilities is challenged by complicated damage morphology, uneven illumination and stray light interference. Fully supe...Segmenting dark-field images of laser-induced damage on large-aperture optics in high-power laser facilities is challenged by complicated damage morphology, uneven illumination and stray light interference. Fully supervised semantic segmentation algorithms have achieved state-of-the-art performance but rely on a large number of pixel-level labels, which are time-consuming and labor-consuming to produce. LayerCAM, an advanced weakly supervised semantic segmentation algorithm, can generate pixel-accurate results using only image-level labels, but its scattered and partially underactivated class activation regions degrade segmentation performance. In this paper, we propose a weakly supervised semantic segmentation method, continuous gradient class activation mapping(CAM) and its nonlinear multiscale fusion(continuous gradient fusion CAM). The method redesigns backpropagating gradients and nonlinearly activates multiscale fused heatmaps to generate more fine-grained class activation maps with an appropriate activation degree for different damage site sizes. Experiments on our dataset show that the proposed method can achieve segmentation performance comparable to that of fully supervised algorithms.展开更多
Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from th...Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods.展开更多
文摘In the field of optoelectronics,certain types of data may be difficult to accurately annotate,such as high-resolution optoelectronic imaging or imaging in certain special spectral ranges.Weakly supervised learning can provide a more reliable approach in these situations.Current popular approaches mainly adopt the classification-based class activation maps(CAM)as initial pseudo labels to solve the task.
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.61725204 and 62002258)a Grant from Science and Technology Department of Jiangsu Province,China.
文摘Background:Image-based automatic diagnosis of field diseases can help increase crop yields and is of great importance.However,crop lesion regions tend to be scattered and of varying sizes,this along with substantial intraclass variation and small inter-class variation makes segmentation difficult.Methods:We propose a novel end-to-end system that only requires weak supervision of image-level labels for lesion region segmentation.First,a two-branch network is designed for joint disease classification and seed region generation.The generated seed regions are then used as input to the next segmentation stage where we design to use an encoder-decoder network.Different from previous works that use an encoder in the segmentation network,the encoder-decoder network is critical for our system to successfully segment images with small and scattered regions,which is the major challenge in image-based diagnosis of field diseases.We further propose a novel weakly supervised training strategy for the encoder-decoder semantic segmentation network,making use of the extracted seed regions.Results:Experimental results show that our system achieves better lesion region segmentation results than state of the arts.In addition to crop images,our method is also applicable to general scattered object segmentation.We demonstrate this by extending our framework to work on the PASCAL VOC dataset,which achieves comparable performance with the state-of-the-art DSRG(deep seeded region growing)method.Conclusion:Our method not only outperforms state-of-the-art semantic segmentation methods by a large margin for the lesion segmentation task,but also shows its capability to perform well on more general tasks.
基金supported by grants fromthe State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory(2023XAKJ0101031)National Natural Science Foundation of China(81971665)+8 种基金Natural Science Foundation of Fujian Province(2021J011366)Medical and Health Guidance Project of Xiamen(3502Z20214ZD1016)Xiamen Health High-Level Talent Training Program,Ningxia Hui Autonomous Region Key Research and Development Program(2022BEG03127)Fundamental Research Funds for the Central Universities of China(20720210117)Fujian Province Science and Technology Plan Guiding Project(2022Y0002)National Natural Science Foundation of China(62005048)Natural Science Foundation of Fujian Province(2020J01158)Ministry of Education Industry-university Cooperative Education Project(220606053295218)XMU Undergraduate Innovation and Entrepreneurship Training Programs(2023X805,2023X808,2023Y1109).
文摘Laser speckle contrast imaging(LSCI)is a noninvasive,label-free technique that allows real-time investigation of the microcirculation situation of biological tissue.High-quality microvascular segmentation is critical for analyzing and evaluating vascular morphology and blood flow dynamics.However,achieving high-quality vessel segmentation has always been a challenge due to the cost and complexity of label data acquisition and the irregular vascular morphology.In addition,supervised learning methods heavily rely on high-quality labels for accurate segmentation results,which often necessitate extensive labeling efforts.Here,we propose a novel approach LSWDP for high-performance real-time vessel segmentation that utilizes low-quality pseudo-labels for nonmatched training without relying on a substantial number of intricate labels and image pairing.Furthermore,we demonstrate that our method is more robust and effective in mitigating performance degradation than traditional segmentation approaches on diverse style data sets,even when confronted with unfamiliar data.Importantly,the dice similarity coefficient exceeded 85%in a rat experiment.Our study has the potential to efficiently segment and evaluate blood vessels in both normal and disease situations.This would greatly benefit future research in life and medicine.
基金supported by the National Natural Science Foundation of China(No.61871182,61773160)the Natural Science Foundation of Hebei Province of China(No.F2021502013)+1 种基金the Fundamental Research Funds for the Central Universities(No.2020MS153,2021PT018)the National Natural Science Foundation of China(No.62371188).
文摘Due to the lack of annotations in target bounding boxes,most methods for weakly supervised target detection transform the problem of object detection into a classification problem of candidate regions,making it easy for weakly supervised target detectors to locate significant and highly discriminative local areas of objects.We propose a weak monitoring method that combines attention and erasure mechanisms.The supervised target detection method uses attention maps to search for areas with higher discrimination within candidate regions,and then uses an erasure mechanism to erase the region,forcing the model to enhance its learning of features in areas with weaker discrimination.To improve the positioning ability of the detector,we cascade the weakly supervised target detection network and the fully supervised target detection network,and jointly train the weakly supervised target detection network and the fully supervised target detection network through multi-task learning.Based on the validation trials,the category mean average precision(mAP)and the correct localization(CorLoc)on the two datasets,i.e.,VOC2007 and VOC2012,are 55.2% and 53.8%,respectively.In regard to the mAP and CorLoc,this approach significantly outperforms previous approaches,which creates opportunities for additional investigations into weakly supervised target identification algorithms.
基金supported by National Natural Science Foundation of China(62336003,12371510)NSF for Distinguished Young Scholar of Jiangsu Province(BK20220080).
文摘Training with confident positive-labeled instances has received a lot of attention in Positive and Unlabeled(PU)learning tasks,and this is formally termed“Instance-Dependent PU learning”.In instance-dependent PU learning,whether a positive instance is labeled depends on its labeling confidence.In other words,it is assumed that not all positive instances have the same probability to be included by the positive set.Instead,the instances that are far from the potential decision boundary are with larger probability to be labeled than those that are close to the decision boundary.This setting has practical importance in many real-world applications such as medical diagnosis,outlier detection,object detection,etc.In this survey,we first present the preliminary knowledge of PU learning,and then review the representative instance-dependent PU learning settings and methods.After that,we thoroughly compare them with typical PU learning methods on various benchmark datasets and analyze their performances.Finally,we discuss the potential directions for future research.
基金supported by National Natural Science Foundation of China(Nos.61871378,U2003111,62122013 and U2001211).
文摘Action recognition and localization in untrimmed videos is important for many applications and have attracted a lot of attention. Since full supervision with frame-level annotation places an overwhelming burden on manual labeling effort, learning with weak video-level supervision becomes a potential solution. In this paper, we propose a novel weakly supervised framework to recognize actions and locate the corresponding frames in untrimmed videos simultaneously. Considering that there are abundant trimmed videos publicly available and well-segmented with semantic descriptions, the instructive knowledge learned on trimmed videos can be fully leveraged to analyze untrimmed videos. We present an effective knowledge transfer strategy based on inter-class semantic relevance. We also take advantage of the self-attention mechanism to obtain a compact video representation, such that the influence of background frames can be effectively eliminated. A learning architecture is designed with twin networks for trimmed and untrimmed videos, to facilitate transferable self-attentive representation learning. Extensive experiments are conducted on three untrimmed benchmark datasets (i.e., THUMOS14, ActivityNet1.3, and MEXaction2), and the experimental results clearly corroborate the efficacy of our method. It is especially encouraging to see that the proposed weakly supervised method even achieves comparable results to some fully supervised methods.
基金supported partially by the National Natural Science Foundation of China(NSFC)(Grant Nos.U1911401 and U1811461)Guangdong NSF Project(2020B1515120085,2018B030312002)+2 种基金Guangzhou Research Project(201902010037)Research Projects of Zhejiang Lab(2019KD0AB03)the Key-Area Research and Development Program of Guangzhou(202007030004).
文摘Anticipating future actions without observing any partial videos of future actions plays an important role in action prediction and is also a challenging task.To obtain abundant information for action anticipation,some methods integrate multimodal contexts,including scene object labels.However,extensively labelling each frame in video datasets requires considerable effort.In this paper,we develop a weakly supervised method that integrates global motion and local finegrained features from current action videos to predict next action label without the need for specific scene context labels.Specifically,we extract diverse types of local features with weakly supervised learning,including object appearance and human pose representations without ground truth.Moreover,we construct a graph convolutional network for exploiting the inherent relationships of humans and objects under present incidents.We evaluate the proposed model on two datasets,the MPII-Cooking dataset and the EPIC-Kitchens dataset,and we demonstrate the generalizability and effectiveness of our approach for action anticipation.
基金Project supported by the Key Project of the National Natural Science Foundation of China(No.U1836220)the National Nat-ural Science Foundation of China(No.61672267)+1 种基金the Qing Lan Talent Program of Jiangsu Province,China,the Jiangsu Key Laboratory of Security Technology for Industrial Cyberspace,China,the Finnish Cultural Foundation,the Jiangsu Specially-Appointed Professor Program,China(No.3051107219003)the liangsu Joint Research Project of Sino-Foreign Cooperative Education Platform,China,and the Talent Startup Project of Nanjing Institute of Technology,China(No.YKJ201982)。
文摘Large-scale datasets are driving the rapid developments of deep convolutional neural networks for visual sentiment analysis.However,the annotation of large-scale datasets is expensive and time consuming.Instead,it iseasy to obtain weakly labeled web images from the Internet.However,noisy labels st.ill lead to seriously degraded performance when we use images directly from the web for training networks.To address this drawback,we propose an end-to-end weakly supervised learning network,which is robust to mislabeled web images.Specifically,the proposed attention module automatically eliminates the distraction of those samples with incorrect labels bv reducing their attention scores in the training process.On the other hand,the special-class activation map module is designed to stimulate the network by focusing on the significant regions from the samples with correct labels in a weakly supervised learning approach.Besides the process of feature learning,applying regularization to the classifier is considered to minimize the distance of those samples within the same class and maximize the distance between different class centroids.Quantitative and qualitative evaluations on well-and mislabeled web image datasets demonstrate that the proposed algorithm outperforms the related methods.
基金supported in part by the National Cancer Institute under award numbers R01CA268287A1,U01CA269181,R01CA26820701A1,R01CA249992-01A1,R01CA202752-01A1,R01CA208236-01A1,R01CA216579-01A1,R01CA220581-01A1,R01CA257612-01A1,1U01CA239055-01,1U01CA248226-01,1U54CA254566-01National Heart,Lung and Blood Institute 1R01HL15127701A1,R01HL15807101A1+8 种基金National Institute of Biomedical Imaging and Bioengineering 1R43EB028736-01VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service the Office of the Assistant Secretary of Defense for Health Affairs,through the Breast Cancer Research Program(W81XWH-19-1-0668)the Prostate Cancer Research Program(W81XWH-20-1-0851)the Lung Cancer Research Program(W81XWH-18-1-0440,W81XWH-20-1-0595)the Peer Reviewed Cancer Research Program(W81XWH-18-1-0404,W81XWH-21-1-0345,W81XWH-211-0160)the Kidney Precision Medicine Project(KPMP)Glue Grant and sponsored research agreements from Bristol Myers-Squibb,Boehringer-Ingelheim,Eli-Lilly and Astrazenecasupported in part by the National Natural Science Foundation of China general program(No.61571314)the Sichuan University-Yibin City Strategic Cooperation Special Fund(No.2020CDYB-27)Support Program of Sichuan Science and Technology Department(No.2023YFS0327-LH).
文摘Accurate prognosis prediction is essential for guiding cancer treatment and improving patient outcomes.While recent studies have demonstrated the potential of histopathological images in survival analysis,existing models are typically developed in a cancerspecific manner,lack extensive external validation,and often rely on molecular data that are not routinely available in clinical practice.To address these limitations,we present PROGPATH,a unified model capable of integrating histopathological image features with routinely collected clinical variables to achieve pancancer prognosis prediction.PROGPATH employs a weakly supervised deep learning architecture built upon the foundation model for image encoding.Morphological features are aggregated through an attention-guided multiple instance learning module and fused with clinical information via a cross-attention transformer.A router-based classification strategy further refines the prediction performance.PROGPATH was trained on 7999 whole-slide images(WSIs)from 6,670 patients across 15 cancer types,and extensively validated on 17 external cohorts with a total of 7374 WSIs from 4441 patients,covering 12 cancer types from 8 consortia and institutions across three continents.PROGPATH achieved consistently superior performance compared with state-of-the-art multimodal prognosis prediction models.It demonstrated strong generalizability across cancer types and robustness in stratified subgroups,including early-and advancedstage patients,treatment cohorts(radiotherapy and pharmaceutical therapy),and biomarker-defined subsets.We further provide model interpretability by identifying pathological patterns critical to PROGPATH’s risk predictions,such as the degree of cell differentiation and extent of necrosis.Together,these results highlight the potential of PROGPATH to support pancancer outcome prediction and inform personalized cancer management strategies.
文摘Segmenting dark-field images of laser-induced damage on large-aperture optics in high-power laser facilities is challenged by complicated damage morphology, uneven illumination and stray light interference. Fully supervised semantic segmentation algorithms have achieved state-of-the-art performance but rely on a large number of pixel-level labels, which are time-consuming and labor-consuming to produce. LayerCAM, an advanced weakly supervised semantic segmentation algorithm, can generate pixel-accurate results using only image-level labels, but its scattered and partially underactivated class activation regions degrade segmentation performance. In this paper, we propose a weakly supervised semantic segmentation method, continuous gradient class activation mapping(CAM) and its nonlinear multiscale fusion(continuous gradient fusion CAM). The method redesigns backpropagating gradients and nonlinearly activates multiscale fused heatmaps to generate more fine-grained class activation maps with an appropriate activation degree for different damage site sizes. Experiments on our dataset show that the proposed method can achieve segmentation performance comparable to that of fully supervised algorithms.
基金supported in part by the CAMS Innovation Fund for Medical Sciences,China(No.2019-I2M5-016)National Natural Science Foundation of China(No.62172246)+1 种基金the Youth Innovation and Technology Support Plan of Colleges and Universities in Shandong Province,China(No.2021KJ062)National Science Foundation of USA(Nos.IIS-1715985 and IIS1812606).
文摘Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods.