This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic diff...This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.展开更多
In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitud...In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.展开更多
BACKGROUND: This study aimed to explore the risk factors associated with intensive care unitacquired weakness(ICU-AW) in critically ill patients at risk of malnutrition and to evaluate the efficacy of early enteral nu...BACKGROUND: This study aimed to explore the risk factors associated with intensive care unitacquired weakness(ICU-AW) in critically ill patients at risk of malnutrition and to evaluate the efficacy of early enteral nutrition(EEN) and the role of biomarkers in managing ICU-AW.METHODS: This retrospective, observational cohort study included 180 patients at risk of malnutrition admitted to the emergency intensive care unit of the First Affiliated Hospital of Xiamen University Hospital from January 2022 to December 2023. Patients were divided into ICU-AW group and non-ICU-AW group according to whether they developed ICU-AW, or categorized into EEN and parenteral nutrition(PN) groups according to nutritional support. ICU-AW was diagnosed using the Medical Research Council score. The primary outcome was the occurrence of ICU-AW.RESULTS: The significant factors associated with ICU-AW included age, sex, type of nutritional therapy, mechanical ventilation(MV), body mass index(BMI), blood urea nitrogen(BUN), and creatinine(Cr) levels(P<0.05). The PN group developed ICU-AW earlier than did the EEN group, with a significant difference observed(log-rank P<0.001). Among biomarkers for ICU-AW, the mean prealbumin(PAB)/C-reactive protein(CRP) ratio had the highest diagnostic accuracy(area under the curve [AUC] 0.928, 95% confidence interval [95% CI] 0.892–0.946), surpassing the mean Cr/BUN ratio(AUC 0.740, 95% CI 0.663–0.819) and mean transferrin levels(AUC 0.653, 95% CI 0.574–0.733).CONCLUSION: Independent risk factors for ICU-AW include female sex, advanced age, PN, MV, lower BMI, and elevated BUN and Cr levels. EEN may potentially delay ICU-AW onset, and the PAB/CRP ratio may be an effective diagnostic marker for this condition.展开更多
The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces...The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.展开更多
Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an...Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.展开更多
本文主要考虑可压欧拉方程组的初边值问题。研究了两类具有高阶精度的熵稳定有限体积格式的收敛性,通过对数值解建立合适的一致性估计,证明随着步长 h → 0,若数值解的密度是远离真空且有界的,则由这两类熵稳定数值格式构造的解可以生...本文主要考虑可压欧拉方程组的初边值问题。研究了两类具有高阶精度的熵稳定有限体积格式的收敛性,通过对数值解建立合适的一致性估计,证明随着步长 h → 0,若数值解的密度是远离真空且有界的,则由这两类熵稳定数值格式构造的解可以生成耗散测度值解。In this paper, we primarily consider the initial boundary value problem for compress-ible Euler equations. We study the convergence of two classes of high-order accurate entropy stable finite volume schemes. By establishing appropriate the priori esti-mates for the numerical solutions, we prove that as the step size h → 0, the solutionsconstructed by these two types of entropy stable numerical schemes can generate dissipative measure-valued solutions, provided that the density of the approximate solutions is bounded away from vacuum and bounded above.展开更多
Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.W...Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.We investigated the formation of nitrogen-induced diaph-ite structures(hybrid diamond-graphite phases)and their role in changing the conductivity.Nitrogen doping in a hy-drogen-rich plasma environment promotes the emergence of unique sp^(3)-sp^(2)bonding interfaces,where diamond grains are covalently integrated with graphitic domains,facilitating a structure-driven electronic transition.High-resolution transmis-sion electron microscopy and selected area electron diffraction reveal five-fold,six-fold and twelve-fold symmetries,along with an atypical{200}crystallographic reflection,confirming diaphite formation in 5%and 10%N-doped UNCD films,while high-er doping levels(15%and 20%)result in extensive graphitization.Raman spectroscopy tracks the evolution of sp^(2)bonding with increasing nitrogen content,while atomic force microscopy and X-ray diffraction indicate a consistent diamond grain size of~8 nm.Cryogenic electronic transport measurements reveal a conductivity increase from 8.72 to 708 S/cm as the nitrogen dop-ing level increases from 5%to 20%,which is attributed to defect-mediated carrier transport and 3D weak localization.The res-ulting conductivity is three orders of magnitude higher than previously reported.These findings establish a direct correlation between diaphite structural polymorphism and tunable electronic properties in nitrogen-doped UNCD films,offering new ways for defect-engineering diamond-based electronic materials.展开更多
The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and...The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.展开更多
In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x...In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x),(t,x)∈[0,T]×R,where D_(δ)^(α)is a nonlocal fractional differential operator and W is the Gaussian noise which is white in time and behaves as a fractional Brownian motion with Hurst index H satisfying 3-α/4<H<1/2,in the space variable.The weak convergence approach plays an important role.展开更多
In this article,the viscoelastic damped was equation in three-dimensional cylindrical domain were studied by using a second-order differential inequality.We proved a Phragm´en-Lindelof alternative results,i.e.,th...In this article,the viscoelastic damped was equation in three-dimensional cylindrical domain were studied by using a second-order differential inequality.We proved a Phragm´en-Lindelof alternative results,i.e.,the smooth solutions either grow or decay exponentially as the distance from the entry section tends to infinity.Our results can be seen as a version of the Saint-Venant principle.展开更多
Reliable detection of weak phase signals under significant channel loss and complex noise environments is a crucial step for practical applications of optical integrated communication and sensing systems. In this lett...Reliable detection of weak phase signals under significant channel loss and complex noise environments is a crucial step for practical applications of optical integrated communication and sensing systems. In this letter, we propose and experimentally demonstrate an enhanced long-distance weak signal transmission method assisted by weak measurement. Performing heterodyne detection and light intensity compensation on two nearly symmetric post-selected paths, the method enables real-time estimation of a time-varying phase while maintaining robustness against technical noises proportional to light intensity or photon number, detector common-mode noise, and significant attenuation over long-distance transmission. Experimental results indicate a potential phase sensitivity at the level of 10-8rad even with a signal light intensity attenuation of 48.1 d B. Potentially, combining the adaptive adjustment strategy, the method may provide a viable solution in remote weak signal detection and extraction,thereby contributing to optical integrated communication and sensing.展开更多
Due to the weak interlayer interactions,the binary Ⅲ-Ⅵ chalcogenides Ga Se can exist in several distinct polymorphs.Among them,the so-called β-and ε-phases simultaneously exhibit favorable total energies and moder...Due to the weak interlayer interactions,the binary Ⅲ-Ⅵ chalcogenides Ga Se can exist in several distinct polymorphs.Among them,the so-called β-and ε-phases simultaneously exhibit favorable total energies and moderate band gaps,which offer a good platform to explore their thermoelectric properties.Here,we demonstrate by first-principles calculations that the two systems have very similar band structures and phonon dispersions,despite different stacking sequences between adjacent layers.Interestingly,the lattice thermal conductivity of ε-GaSe is obviously lower than that of β-GaSe,which is inherently tied to stronger lattice anharmonicity caused by bonding heterogeneity.Besides,both systems exhibit higher p-type power factors due to doubly degenerate bands with weaker dispersions around the valence band maximum.As a consequence,a significantly enhanced p-type figure-of-merit of 2.1 can be realized at 700 K along the out-of-plane direction of theε-phase.展开更多
In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the d...In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the direction of the self-mixing fringes accurately and quickly.In the process of measurement,the measurement signal can be normalized and then the neural network can be used to discriminate the direction.Simulation and experimental results show that the proposed method is suitable for self-mixing interference signals with noise in the whole weak feedback regime,and can maintain a high discrimination accuracy for signals interfered by 5 dB large noise.Combined with fringe counting method,accurate and rapid displacement reconstruction can be realized.展开更多
Intensive care unit(ICU)acquired sarcopenia and myosteatosis are increasingly recognized complications of critical illness,characterized by a rapid loss of ske-letal muscle mass,quality,and function.These conditions r...Intensive care unit(ICU)acquired sarcopenia and myosteatosis are increasingly recognized complications of critical illness,characterized by a rapid loss of ske-letal muscle mass,quality,and function.These conditions result from a complex interplay of systemic inflammation,immobilization,catabolic stress,mitochon-drial dysfunction,and immune dysregulation,often culminating in impaired recovery,prolonged hospitalization,and increased long-term mortality.First identified in survivors of sepsis and prolonged mechanical ventilation,these muscle abnormalities were initially described using computed tomography-based assessments of muscle area and density.Subsequent advances in imaging,biomarker discovery,and functional testing have enabled earlier detection and risk stratification across diverse ICU populations.While nutritional optimization and early mobilization form the cornerstone of current prevention and treatment strategies,the emergence of novel approaches,including automated artificial intelligence-based screening,neuromuscular electrical stimulation,and targeted pharmacologic therapies,has broadened the clinical scope of interventions.Despite their significant prognostic implications,ICU-acquired sarcopenia and myosteatosis remain under-recognized in routine critical care practice.This mini-review aims to synthesize current knowledge regarding their pathophysiology,available diagnostic modalities,prognostic relevance,and the evolving landscape of therapeutic strategies for long-term functional recovery in critically ill patients.展开更多
This retrospective case study investigates the clinical presentation of a 53-year-old female who underwent mantle field radiotherapy roughly 26 years ago. This patient presents with diffuse muscle atrophy and weakness...This retrospective case study investigates the clinical presentation of a 53-year-old female who underwent mantle field radiotherapy roughly 26 years ago. This patient presents with diffuse muscle atrophy and weakness in the cervical musculature, as well as sensory deficits in the upper extremities. We sought to compare our patient’s symptoms with other patients who had been formally diagnosed with Dropped Head Syndrome (DHS) by reviewing the existing literature. We found that the clinical presentation under investigation was consistent with other patients who had received radiotherapy for Hodgkins’s disease and were then diagnosed with DHS. Electromyography (EMG), nerve conduction studies, and a cervical MRI were unable to identify a separate neurological cause for the symptoms, but the MRI did confirm the presence of diffuse muscle atrophy in the cervical musculature. After reviewing the existing literature and imaging results, we compared our patient’s symptoms to those that define DHS, and both the time of onset, presenting symptoms, and progressing course are consistent with a diagnosis of Dropped Head Syndrome.展开更多
Electron-electron interactions(EEIs),quantum interference,and the effects of disorder on transport properties are essential topics in condensed matter physics.A series of our characterization work demonstrates that th...Electron-electron interactions(EEIs),quantum interference,and the effects of disorder on transport properties are essential topics in condensed matter physics.A series of our characterization work demonstrates that the morphology of Bi_(2)Te_(3)/MnTe bilayer film mainly depends on the magnetic substrate's growth mode and thickness.We propose that the temperature-dependent quantum interference of the electron wave function caused by disorder drives the transition from weak antilocalization(WAL) to weak localization(WL).Due to spin regulation,WL under low fields originates from the ferromagnetism in MnTe.The quantum interference effect(QIE) model analysis gives the degree of impurity scattering of the electron wave function.The electron wave is scattered by impurities,which causes the Berry phase to change from π to 0,producing a complete WL behavior.The stacked structure provides tunable degrees of freedom,allowing for independent optimization of topological properties and magnetic order through preferential growth orientation of topological insulator(TI) and magnetic layers,respectively.展开更多
Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by hig...Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by high dark current,which can greatly reduce their performance and sensitivity,thereby limiting their effectiveness in certain applications.In this work,the introduction of a C60 back interface layer successfully mitigated back interface reactions to decrease the thickness of the Mo(S,Se)_(2)layer,tailoring the back-contact barrier and preventing reverse charge injection,resulting in a kesterite photodetector with an ultralow dark current density of 5.2×10^(-9)mA/cm^(2)and ultra-weak-light detection at levels as low as 25 pW/cm^(2).Besides,under a self-powered operation,it demonstrates outstanding performance,achieving a peak responsivity of 0.68 A/W,a wide response range spanning from 300 to 1600 nm,and an impressive detectivity of 5.27×10^(14)Jones.In addition,it offers exceptionally rapid response times,with rise and decay times of 70 and 650 ns,respectively.This research offers important insights for developing high-performance self-powered near-infrared photodetectors that have high responsivity,rapid response times,and ultralow dark current.展开更多
The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on unders...The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering.展开更多
With recent technological advancements,tunnel boring machines(TBM)have developed and exhibited high performance in large diameters and weak ground conditions.Tunnels are crucial structures that significantly influence...With recent technological advancements,tunnel boring machines(TBM)have developed and exhibited high performance in large diameters and weak ground conditions.Tunnels are crucial structures that significantly influence the timelines of highway and railway projects.Therefore,the construction of tunnels with TBMs becomes a preferred option.In this study,a comparative analysis between TBM and the New Austrian Tunneling Method(NATM)for tunnel construction is performed in the construction of the T1 tunnel with a diameter of 13 m,which is the longest tunnel in the E?me-Salihli section of Ankara-izmir High-Speed Railway Project(Türkiye).The selection of TBM type,measures taken in problematic sections,and application issues of TBM are discussed.The impact of correct description of geological and geotechnical conditions on both selection and performance of TBM is presented.An earth pressure balanced type TBM is chosen for the construction of the T1 tunnel.Because of the additional engineering measures taken before excavation in problematic areas,the tunnel was completed with great success within the initially planned timeframe.From this point of view,this study is an important case and may contribute to worldwide tunneling literature.展开更多
Weakly solvating electrolyte(WSE)demonstrates superior compatibility with lithium(Li)metal batteries(LMBs).However,its application in fast-charging high-voltage LMBs is challenging.Here,we propose a diluent modified W...Weakly solvating electrolyte(WSE)demonstrates superior compatibility with lithium(Li)metal batteries(LMBs).However,its application in fast-charging high-voltage LMBs is challenging.Here,we propose a diluent modified WSE for fast-charging high-voltage LMBs,which is formed by adding diluent of 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether(TTE)into the tetrahydropyran(THP)based WSE.A relatively loose solvation structure is formed due to the formation of weak hydrogen bond between TTE and THP,which accelerates the de-solvation kinetics of Li~+.Besides,more anions are involved in solvation structure in the presence of TTE,yielding inorganic-rich interphases with improved stability.Li(30μm)||Li Ni_(0.5)Co_(0.2)Mn_(0.3)O_(2)(4.1 mAh/cm^(2))batteries with the TTE modified WSE retain over 64%capacity retention after 175 cycles under high rate of 3 C and high-voltage of 4.5 V,much better than that with pure THP based WSE.This work points out that the combination of diluent with weakly solvating solvent is a promising approach to develop high performance electrolytes for fast-charging high-voltage LMBs.展开更多
基金Supported by the National Natural Science Foundation of China(12001074)the Research Innovation Program of Graduate Students in Hunan Province(CX20220258)+1 种基金the Research Innovation Program of Graduate Students of Central South University(1053320214147)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110025)。
文摘This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.
基金supported by the National Key Research and Development Program of China(No.2022YFA1603401)National Natural Science Foundation of China(Nos.12035010 and 12342501)+1 种基金Beijing Outstanding Young Scientist Program(No.JWZQ20240101006)the Tsinghua University Dushi Program.
文摘In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.
文摘BACKGROUND: This study aimed to explore the risk factors associated with intensive care unitacquired weakness(ICU-AW) in critically ill patients at risk of malnutrition and to evaluate the efficacy of early enteral nutrition(EEN) and the role of biomarkers in managing ICU-AW.METHODS: This retrospective, observational cohort study included 180 patients at risk of malnutrition admitted to the emergency intensive care unit of the First Affiliated Hospital of Xiamen University Hospital from January 2022 to December 2023. Patients were divided into ICU-AW group and non-ICU-AW group according to whether they developed ICU-AW, or categorized into EEN and parenteral nutrition(PN) groups according to nutritional support. ICU-AW was diagnosed using the Medical Research Council score. The primary outcome was the occurrence of ICU-AW.RESULTS: The significant factors associated with ICU-AW included age, sex, type of nutritional therapy, mechanical ventilation(MV), body mass index(BMI), blood urea nitrogen(BUN), and creatinine(Cr) levels(P<0.05). The PN group developed ICU-AW earlier than did the EEN group, with a significant difference observed(log-rank P<0.001). Among biomarkers for ICU-AW, the mean prealbumin(PAB)/C-reactive protein(CRP) ratio had the highest diagnostic accuracy(area under the curve [AUC] 0.928, 95% confidence interval [95% CI] 0.892–0.946), surpassing the mean Cr/BUN ratio(AUC 0.740, 95% CI 0.663–0.819) and mean transferrin levels(AUC 0.653, 95% CI 0.574–0.733).CONCLUSION: Independent risk factors for ICU-AW include female sex, advanced age, PN, MV, lower BMI, and elevated BUN and Cr levels. EEN may potentially delay ICU-AW onset, and the PAB/CRP ratio may be an effective diagnostic marker for this condition.
基金supported by the National Key Research and Development Program of China(No.2019YFC1803501)the National Natural Science Foundation of China(No.52074357)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ30713)the Vanadium Titanium Union Foundationthe Project of Technology Innovation Center for Comprehensive Utilization of Strategic Mineral Resources,Ministry of Natural Resources,China。
文摘The potential of 2-amino-1-propanol(AP)as a novel depressant in selectively floating ilmenite from titanaugite under weakly acidic conditions was investigated.Micro-flotation results show that AP significantly reduces the recovery of titanaugite while having no evident impact on ilmenite flotation.Subsequent bench-scale flotation tests further confirm a remarkable improvement in separation efficiency upon the introduction of AP.Contact angle and adsorption tests reveal a stronger affinity of AP towards the titanaugite surface in comparison to ilmenite.Zeta potential measurements and X-ray photoelectron spectroscopy(XPS)analyses exhibit favorable adsorption characteristics of AP on titanaugite,resulting from a synergy of electrostatic attraction and chemical interaction.In contrast,electrostatic repulsion hinders any significant interaction between AP and the ilmenite surface.These findings highlight the potential of AP as a highly efficient depressant for ilmenite flotation,paving the way for reduced reliance on sulfuric acid in the industry.
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(No.52279097,No.51779264)Blue and Green Project of Jiangsu Province.
文摘Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.
文摘本文主要考虑可压欧拉方程组的初边值问题。研究了两类具有高阶精度的熵稳定有限体积格式的收敛性,通过对数值解建立合适的一致性估计,证明随着步长 h → 0,若数值解的密度是远离真空且有界的,则由这两类熵稳定数值格式构造的解可以生成耗散测度值解。In this paper, we primarily consider the initial boundary value problem for compress-ible Euler equations. We study the convergence of two classes of high-order accurate entropy stable finite volume schemes. By establishing appropriate the priori esti-mates for the numerical solutions, we prove that as the step size h → 0, the solutionsconstructed by these two types of entropy stable numerical schemes can generate dissipative measure-valued solutions, provided that the density of the approximate solutions is bounded away from vacuum and bounded above.
文摘Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.We investigated the formation of nitrogen-induced diaph-ite structures(hybrid diamond-graphite phases)and their role in changing the conductivity.Nitrogen doping in a hy-drogen-rich plasma environment promotes the emergence of unique sp^(3)-sp^(2)bonding interfaces,where diamond grains are covalently integrated with graphitic domains,facilitating a structure-driven electronic transition.High-resolution transmis-sion electron microscopy and selected area electron diffraction reveal five-fold,six-fold and twelve-fold symmetries,along with an atypical{200}crystallographic reflection,confirming diaphite formation in 5%and 10%N-doped UNCD films,while high-er doping levels(15%and 20%)result in extensive graphitization.Raman spectroscopy tracks the evolution of sp^(2)bonding with increasing nitrogen content,while atomic force microscopy and X-ray diffraction indicate a consistent diamond grain size of~8 nm.Cryogenic electronic transport measurements reveal a conductivity increase from 8.72 to 708 S/cm as the nitrogen dop-ing level increases from 5%to 20%,which is attributed to defect-mediated carrier transport and 3D weak localization.The res-ulting conductivity is three orders of magnitude higher than previously reported.These findings establish a direct correlation between diaphite structural polymorphism and tunable electronic properties in nitrogen-doped UNCD films,offering new ways for defect-engineering diamond-based electronic materials.
文摘The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2.
基金Partially supported by NSFC(No.11701304)the K.C.Wong Education Foundation。
文摘In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x),(t,x)∈[0,T]×R,where D_(δ)^(α)is a nonlocal fractional differential operator and W is the Gaussian noise which is white in time and behaves as a fractional Brownian motion with Hurst index H satisfying 3-α/4<H<1/2,in the space variable.The weak convergence approach plays an important role.
基金Supported by the Guangdong Natural Science foundation(2023A1515012044)Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities(2023ZDZX4069)+1 种基金the Research Team of Guangzhou Huashang College(2021HSKT01)Guangzhou Huashang College’s Characteristic Research Projects(2024HSTS09)。
文摘In this article,the viscoelastic damped was equation in three-dimensional cylindrical domain were studied by using a second-order differential inequality.We proved a Phragm´en-Lindelof alternative results,i.e.,the smooth solutions either grow or decay exponentially as the distance from the entry section tends to infinity.Our results can be seen as a version of the Saint-Venant principle.
基金supported by the National Natural Science Foundation of China(Grant No.62471289)the Natural Science Foundation of Shanghai (Grant No.24ZR1432900)+1 种基金the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0300703)Shanghai Municipal Science and Technology Major Project (Grant No.2019SHZDZX01)。
文摘Reliable detection of weak phase signals under significant channel loss and complex noise environments is a crucial step for practical applications of optical integrated communication and sensing systems. In this letter, we propose and experimentally demonstrate an enhanced long-distance weak signal transmission method assisted by weak measurement. Performing heterodyne detection and light intensity compensation on two nearly symmetric post-selected paths, the method enables real-time estimation of a time-varying phase while maintaining robustness against technical noises proportional to light intensity or photon number, detector common-mode noise, and significant attenuation over long-distance transmission. Experimental results indicate a potential phase sensitivity at the level of 10-8rad even with a signal light intensity attenuation of 48.1 d B. Potentially, combining the adaptive adjustment strategy, the method may provide a viable solution in remote weak signal detection and extraction,thereby contributing to optical integrated communication and sensing.
基金supported by the National Natural Science Foundation of China(Grant Nos.62074114 and 12474019)。
文摘Due to the weak interlayer interactions,the binary Ⅲ-Ⅵ chalcogenides Ga Se can exist in several distinct polymorphs.Among them,the so-called β-and ε-phases simultaneously exhibit favorable total energies and moderate band gaps,which offer a good platform to explore their thermoelectric properties.Here,we demonstrate by first-principles calculations that the two systems have very similar band structures and phonon dispersions,despite different stacking sequences between adjacent layers.Interestingly,the lattice thermal conductivity of ε-GaSe is obviously lower than that of β-GaSe,which is inherently tied to stronger lattice anharmonicity caused by bonding heterogeneity.Besides,both systems exhibit higher p-type power factors due to doubly degenerate bands with weaker dispersions around the valence band maximum.As a consequence,a significantly enhanced p-type figure-of-merit of 2.1 can be realized at 700 K along the out-of-plane direction of theε-phase.
文摘In order to identify the tilt direction of the self-mixing signals under weak feedback regime interfered by noise,a deep learning method is proposed.The one-dimensional U-Net(1D U-Net)neural network can identify the direction of the self-mixing fringes accurately and quickly.In the process of measurement,the measurement signal can be normalized and then the neural network can be used to discriminate the direction.Simulation and experimental results show that the proposed method is suitable for self-mixing interference signals with noise in the whole weak feedback regime,and can maintain a high discrimination accuracy for signals interfered by 5 dB large noise.Combined with fringe counting method,accurate and rapid displacement reconstruction can be realized.
文摘Intensive care unit(ICU)acquired sarcopenia and myosteatosis are increasingly recognized complications of critical illness,characterized by a rapid loss of ske-letal muscle mass,quality,and function.These conditions result from a complex interplay of systemic inflammation,immobilization,catabolic stress,mitochon-drial dysfunction,and immune dysregulation,often culminating in impaired recovery,prolonged hospitalization,and increased long-term mortality.First identified in survivors of sepsis and prolonged mechanical ventilation,these muscle abnormalities were initially described using computed tomography-based assessments of muscle area and density.Subsequent advances in imaging,biomarker discovery,and functional testing have enabled earlier detection and risk stratification across diverse ICU populations.While nutritional optimization and early mobilization form the cornerstone of current prevention and treatment strategies,the emergence of novel approaches,including automated artificial intelligence-based screening,neuromuscular electrical stimulation,and targeted pharmacologic therapies,has broadened the clinical scope of interventions.Despite their significant prognostic implications,ICU-acquired sarcopenia and myosteatosis remain under-recognized in routine critical care practice.This mini-review aims to synthesize current knowledge regarding their pathophysiology,available diagnostic modalities,prognostic relevance,and the evolving landscape of therapeutic strategies for long-term functional recovery in critically ill patients.
文摘This retrospective case study investigates the clinical presentation of a 53-year-old female who underwent mantle field radiotherapy roughly 26 years ago. This patient presents with diffuse muscle atrophy and weakness in the cervical musculature, as well as sensory deficits in the upper extremities. We sought to compare our patient’s symptoms with other patients who had been formally diagnosed with Dropped Head Syndrome (DHS) by reviewing the existing literature. We found that the clinical presentation under investigation was consistent with other patients who had received radiotherapy for Hodgkins’s disease and were then diagnosed with DHS. Electromyography (EMG), nerve conduction studies, and a cervical MRI were unable to identify a separate neurological cause for the symptoms, but the MRI did confirm the presence of diffuse muscle atrophy in the cervical musculature. After reviewing the existing literature and imaging results, we compared our patient’s symptoms to those that define DHS, and both the time of onset, presenting symptoms, and progressing course are consistent with a diagnosis of Dropped Head Syndrome.
基金financially supported by the National Natural Science Foundation of China (Nos.52371204, 52201233,and 52031014)
文摘Electron-electron interactions(EEIs),quantum interference,and the effects of disorder on transport properties are essential topics in condensed matter physics.A series of our characterization work demonstrates that the morphology of Bi_(2)Te_(3)/MnTe bilayer film mainly depends on the magnetic substrate's growth mode and thickness.We propose that the temperature-dependent quantum interference of the electron wave function caused by disorder drives the transition from weak antilocalization(WAL) to weak localization(WL).Due to spin regulation,WL under low fields originates from the ferromagnetism in MnTe.The quantum interference effect(QIE) model analysis gives the degree of impurity scattering of the electron wave function.The electron wave is scattered by impurities,which causes the Berry phase to change from π to 0,producing a complete WL behavior.The stacked structure provides tunable degrees of freedom,allowing for independent optimization of topological properties and magnetic order through preferential growth orientation of topological insulator(TI) and magnetic layers,respectively.
基金supported by the National Natural Science Foundation of China(No.52472225)the Science and Technology Plan Project of Shenzhen(No.20220808165025003),China。
文摘Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by high dark current,which can greatly reduce their performance and sensitivity,thereby limiting their effectiveness in certain applications.In this work,the introduction of a C60 back interface layer successfully mitigated back interface reactions to decrease the thickness of the Mo(S,Se)_(2)layer,tailoring the back-contact barrier and preventing reverse charge injection,resulting in a kesterite photodetector with an ultralow dark current density of 5.2×10^(-9)mA/cm^(2)and ultra-weak-light detection at levels as low as 25 pW/cm^(2).Besides,under a self-powered operation,it demonstrates outstanding performance,achieving a peak responsivity of 0.68 A/W,a wide response range spanning from 300 to 1600 nm,and an impressive detectivity of 5.27×10^(14)Jones.In addition,it offers exceptionally rapid response times,with rise and decay times of 70 and 650 ns,respectively.This research offers important insights for developing high-performance self-powered near-infrared photodetectors that have high responsivity,rapid response times,and ultralow dark current.
基金supported by the Key R&D Program Project of Xinjiang Province(2024B01013)the National Key Research and Development Program of China(2022YFE0129800).
文摘The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering.
文摘With recent technological advancements,tunnel boring machines(TBM)have developed and exhibited high performance in large diameters and weak ground conditions.Tunnels are crucial structures that significantly influence the timelines of highway and railway projects.Therefore,the construction of tunnels with TBMs becomes a preferred option.In this study,a comparative analysis between TBM and the New Austrian Tunneling Method(NATM)for tunnel construction is performed in the construction of the T1 tunnel with a diameter of 13 m,which is the longest tunnel in the E?me-Salihli section of Ankara-izmir High-Speed Railway Project(Türkiye).The selection of TBM type,measures taken in problematic sections,and application issues of TBM are discussed.The impact of correct description of geological and geotechnical conditions on both selection and performance of TBM is presented.An earth pressure balanced type TBM is chosen for the construction of the T1 tunnel.Because of the additional engineering measures taken before excavation in problematic areas,the tunnel was completed with great success within the initially planned timeframe.From this point of view,this study is an important case and may contribute to worldwide tunneling literature.
基金supported by Hengyang City,Hunan Province Science and Technology Innovation Project(No.202250045319)the National Natural Science Foundation of China(Nos.11375084,21808125)the Scientific Research Planning Project of Jilin Provincial Education Department(No.JJKH20241249KJ)。
文摘Weakly solvating electrolyte(WSE)demonstrates superior compatibility with lithium(Li)metal batteries(LMBs).However,its application in fast-charging high-voltage LMBs is challenging.Here,we propose a diluent modified WSE for fast-charging high-voltage LMBs,which is formed by adding diluent of 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether(TTE)into the tetrahydropyran(THP)based WSE.A relatively loose solvation structure is formed due to the formation of weak hydrogen bond between TTE and THP,which accelerates the de-solvation kinetics of Li~+.Besides,more anions are involved in solvation structure in the presence of TTE,yielding inorganic-rich interphases with improved stability.Li(30μm)||Li Ni_(0.5)Co_(0.2)Mn_(0.3)O_(2)(4.1 mAh/cm^(2))batteries with the TTE modified WSE retain over 64%capacity retention after 175 cycles under high rate of 3 C and high-voltage of 4.5 V,much better than that with pure THP based WSE.This work points out that the combination of diluent with weakly solvating solvent is a promising approach to develop high performance electrolytes for fast-charging high-voltage LMBs.