A bottleneck in biomimetic synthesis consists in the full copy of,for example,the hierarchical structure of proteins directed by weak interactions.By contrast with covalent bonds bearing definite orientation and high ...A bottleneck in biomimetic synthesis consists in the full copy of,for example,the hierarchical structure of proteins directed by weak interactions.By contrast with covalent bonds bearing definite orientation and high stability,weak intermolecular forces within a continuous dynamic equilibrium can be hardly tamed for molecular design.In this endeavor,a ligand-dominated strategy that embodies tunable electrostatic repulsion andπ···πstacking was first employed to shape polyoxovanadate-based metal-organic polyhedra(VMOPs).Structural evolution involving transformation,interlock,and discovery of an unprecedented prototype of the Star of David was hence achievable.Not only as a handy tool for the primary structural control over VMOPs,these weak forces allow for an advanced management on the spatial distribution of such manmade macromolecules as well as the associated physicochemical behaviors,representing an ideal model for simulating and interpreting the conformation-function relationship of proteins.展开更多
The present work explores the propagation characteristics of high-power beams in weakly relativistic-ponderomotive thermal quantum plasma.A q-Gaussian laser beam is taken in the present investigation.The quasi-optics ...The present work explores the propagation characteristics of high-power beams in weakly relativistic-ponderomotive thermal quantum plasma.A q-Gaussian laser beam is taken in the present investigation.The quasi-optics equation obtained in the present study is solved through a well-established Wentzel–Kramers–Brillouin approximation and paraxial theory approach for obtaining the second-order differential equation describing the behavior of beam width of the laser beam.Further,a numerical simulation of this second-order differential equation is carried out for determining the behavior of the beam width with dimensionless distance for established laser–plasma parameters.The comparison of the present study is made with ordinary quantum plasma and classical relativistic plasma cases.展开更多
The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved....The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved. The nonlinear equations governing the transverse vibration are derived from the dynamical, constitutive, and geometrical relations. The method of multiple scales is used to determine the steady-state response. The modulation equation is derived from the solvability condition of eliminating secular terms. Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation. The stability of non- trivial steady-state response is examined via the Routh-Hurwitz criterion.展开更多
The existence of local attractors in thin 2D domains far the weakly damped forced KdV equation, whose principal operator is a non-self adjoint and non-sectorial one is given.
It is presented that there exists approximate inertial manifolds in weakly damped forced Kdv equation with with periodic boundary conditionsIIbns. The approximate inertial manifolds provide approximant of the attractr...It is presented that there exists approximate inertial manifolds in weakly damped forced Kdv equation with with periodic boundary conditionsIIbns. The approximate inertial manifolds provide approximant of the attractror by finite dimensional smooth manifolds which are exphcitly defined And the concepl leads to new numerical schemes which are well adapted to the longtime behavior of dynamical system.展开更多
Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary partic...Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary particles do indeed have a substructure, three dimensions, and occupy space, being composed of fundamental particles called I-particles. In this article we identify the substructural pattern of elementary particles and define the quanta of energy that form each elementary particle. We demonstrate that the substructure comprises two classes of quanta which we call “attraction quanta” and “repulsion quanta”. We create a model that defines the rest-mass energy of each elementary particle and can predict new particles. Lastly, in order to incorporate this knowledge into the contemporary models of science, a revised periodic table is proposed.展开更多
The presented circular current loop model reveals that charged fundamental particles such as the electron consist essentially of electric and magnetic energy. The magnetic properties have the same order of magnitude a...The presented circular current loop model reveals that charged fundamental particles such as the electron consist essentially of electric and magnetic energy. The magnetic properties have the same order of magnitude as the electric ones. The electromagnetic field energy is the origin of the inertial mass. The Higgs boson, existing or not, is not needed to “explain” particle mass. The magnetic moment of fundamental particles is not anomalous! The “anomaly” indicates the existence of a small additional amount of kinetic energy. Thus, fundamental particles are not purely field-like such as photons and not (essentially) mass-like such as atoms, they represent a special kind of matter in between. Their kinetic energy is obviously not due to any relativistic effect but is related to an independent physical law that provides, together with the magnetic energy, the angular momentum exactly to be ħ/2. Fundamental particles are (at least) two-dimensional. In the simplest case their core consists of two concentric, nearly identical current loops. Their relative design details, the “anomaly” factor, and the rotational velocity of the uniformly distributed elementary charge follow from the stability condition, i.e. electric and magnetic force balance, and do not depend on the particle’s rest mass! Fundamental particles are objects of classical physics. Their magnetic forces are the true origin of the weak and strong nuclear interactions. For their explanation bosons and gluons are not needed.展开更多
This study investigated the regime-dependent predictability using convective-scale ensemble forecasts initialized with different initial condition perturbations in the Yangtze and Huai River basin(YHRB)of East China.T...This study investigated the regime-dependent predictability using convective-scale ensemble forecasts initialized with different initial condition perturbations in the Yangtze and Huai River basin(YHRB)of East China.The scale-dependent error growth(ensemble variability)and associated impact on precipitation forecasts(precipitation uncertainties)were quantitatively explored for 13 warm-season convective events that were categorized in terms of strong forcing and weak forcing.The forecast error growth in the strong-forcing regime shows a stepwise increase with increasing spatial scale,while the error growth shows a larger temporal variability with an afternoon peak appearing at smaller scales under weak forcing.This leads to the dissimilarity of precipitation uncertainty and shows a strong correlation between error growth and precipitation across spatial scales.The lateral boundary condition errors exert a quasi-linear increase on error growth with time at the larger scale,suggesting that the large-scale flow could govern the magnitude of error growth and associated precipitation uncertainties,especially for the strong-forcing regime.Further comparisons between scale-based initial error sensitivity experiments show evident scale interaction including upscale transfer of small-scale errors and downscale cascade of larger-scale errors.Specifically,small-scale errors are found to be more sensitive in the weak-forcing regime than those under strong forcing.Meanwhile,larger-scale initial errors are responsible for the error growth after 4 h and produce the precipitation uncertainties at the meso-β-scale.Consequently,these results can be used to explain underdispersion issues in convective-scale ensemble forecasts and provide feedback for ensemble design over the YHRB.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22001066)the Natural Science Foundation of Hunan Province(Nos.2021JJ40049 and 2022JJ20007)+3 种基金the Science and Technology Innovation Program of Hunan Province(No.2022RC1115)J.Du acknowledges the Science and Technology Project of Hebei Education Department(No.QN2023049)Science Foundation of Hebei Normal University(No.L2023B51)TianHe-2(LvLiang,China)Cloud Computing Center for support。
文摘A bottleneck in biomimetic synthesis consists in the full copy of,for example,the hierarchical structure of proteins directed by weak interactions.By contrast with covalent bonds bearing definite orientation and high stability,weak intermolecular forces within a continuous dynamic equilibrium can be hardly tamed for molecular design.In this endeavor,a ligand-dominated strategy that embodies tunable electrostatic repulsion andπ···πstacking was first employed to shape polyoxovanadate-based metal-organic polyhedra(VMOPs).Structural evolution involving transformation,interlock,and discovery of an unprecedented prototype of the Star of David was hence achievable.Not only as a handy tool for the primary structural control over VMOPs,these weak forces allow for an advanced management on the spatial distribution of such manmade macromolecules as well as the associated physicochemical behaviors,representing an ideal model for simulating and interpreting the conformation-function relationship of proteins.
文摘The present work explores the propagation characteristics of high-power beams in weakly relativistic-ponderomotive thermal quantum plasma.A q-Gaussian laser beam is taken in the present investigation.The quasi-optics equation obtained in the present study is solved through a well-established Wentzel–Kramers–Brillouin approximation and paraxial theory approach for obtaining the second-order differential equation describing the behavior of beam width of the laser beam.Further,a numerical simulation of this second-order differential equation is carried out for determining the behavior of the beam width with dimensionless distance for established laser–plasma parameters.The comparison of the present study is made with ordinary quantum plasma and classical relativistic plasma cases.
基金Project supported by the National Natural Science Foundation of China (No.10972143)the Shanghai Municipal Education Commission (No.YYY11040)+2 种基金the Shanghai Leading Academic Discipline Project (No.J51501)the Leading Academic Discipline Project of Shanghai Institute of Technology(No.1020Q121001)the Start Foundation for Introducing Talents of Shanghai Institute of Technology (No.YJ2011-26)
文摘The weakly forced vibration of an axially moving viscoelastic beam is inves- tigated. The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved. The nonlinear equations governing the transverse vibration are derived from the dynamical, constitutive, and geometrical relations. The method of multiple scales is used to determine the steady-state response. The modulation equation is derived from the solvability condition of eliminating secular terms. Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation. The stability of non- trivial steady-state response is examined via the Routh-Hurwitz criterion.
文摘The existence of local attractors in thin 2D domains far the weakly damped forced KdV equation, whose principal operator is a non-self adjoint and non-sectorial one is given.
文摘It is presented that there exists approximate inertial manifolds in weakly damped forced Kdv equation with with periodic boundary conditionsIIbns. The approximate inertial manifolds provide approximant of the attractror by finite dimensional smooth manifolds which are exphcitly defined And the concepl leads to new numerical schemes which are well adapted to the longtime behavior of dynamical system.
文摘Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary particles do indeed have a substructure, three dimensions, and occupy space, being composed of fundamental particles called I-particles. In this article we identify the substructural pattern of elementary particles and define the quanta of energy that form each elementary particle. We demonstrate that the substructure comprises two classes of quanta which we call “attraction quanta” and “repulsion quanta”. We create a model that defines the rest-mass energy of each elementary particle and can predict new particles. Lastly, in order to incorporate this knowledge into the contemporary models of science, a revised periodic table is proposed.
文摘The presented circular current loop model reveals that charged fundamental particles such as the electron consist essentially of electric and magnetic energy. The magnetic properties have the same order of magnitude as the electric ones. The electromagnetic field energy is the origin of the inertial mass. The Higgs boson, existing or not, is not needed to “explain” particle mass. The magnetic moment of fundamental particles is not anomalous! The “anomaly” indicates the existence of a small additional amount of kinetic energy. Thus, fundamental particles are not purely field-like such as photons and not (essentially) mass-like such as atoms, they represent a special kind of matter in between. Their kinetic energy is obviously not due to any relativistic effect but is related to an independent physical law that provides, together with the magnetic energy, the angular momentum exactly to be ħ/2. Fundamental particles are (at least) two-dimensional. In the simplest case their core consists of two concentric, nearly identical current loops. Their relative design details, the “anomaly” factor, and the rotational velocity of the uniformly distributed elementary charge follow from the stability condition, i.e. electric and magnetic force balance, and do not depend on the particle’s rest mass! Fundamental particles are objects of classical physics. Their magnetic forces are the true origin of the weak and strong nuclear interactions. For their explanation bosons and gluons are not needed.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1502103)the National Natural Science Foundation of China(Grant Nos.41430427 and 41705035)+1 种基金the China Scholarship Councilthe Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX17_0876)。
文摘This study investigated the regime-dependent predictability using convective-scale ensemble forecasts initialized with different initial condition perturbations in the Yangtze and Huai River basin(YHRB)of East China.The scale-dependent error growth(ensemble variability)and associated impact on precipitation forecasts(precipitation uncertainties)were quantitatively explored for 13 warm-season convective events that were categorized in terms of strong forcing and weak forcing.The forecast error growth in the strong-forcing regime shows a stepwise increase with increasing spatial scale,while the error growth shows a larger temporal variability with an afternoon peak appearing at smaller scales under weak forcing.This leads to the dissimilarity of precipitation uncertainty and shows a strong correlation between error growth and precipitation across spatial scales.The lateral boundary condition errors exert a quasi-linear increase on error growth with time at the larger scale,suggesting that the large-scale flow could govern the magnitude of error growth and associated precipitation uncertainties,especially for the strong-forcing regime.Further comparisons between scale-based initial error sensitivity experiments show evident scale interaction including upscale transfer of small-scale errors and downscale cascade of larger-scale errors.Specifically,small-scale errors are found to be more sensitive in the weak-forcing regime than those under strong forcing.Meanwhile,larger-scale initial errors are responsible for the error growth after 4 h and produce the precipitation uncertainties at the meso-β-scale.Consequently,these results can be used to explain underdispersion issues in convective-scale ensemble forecasts and provide feedback for ensemble design over the YHRB.