BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath. OBJECTIVE: To investigate the effects of action potential-simulated weak electric fie...BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath. OBJECTIVE: To investigate the effects of action potential-simulated weak electric fields on myelination in the central nervous system. DESIGN AND SETTING: This single-sample observation study was performed at the 324 Hospital of Chinese PLA. MATERIALS: Two 5 μm carbon fibers were provided by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. One Sprague Dawley rat, aged 1 day, was used. METHODS: Cerebral cortex was harvested from the rat to prepare a suspension [(1 2)× 10^5/mL] containing neurons and glial cells. To simulate the axon, carbon fibers were placed at the bottom of the neuron-glial cell coculture dish, and were electrified with a single phase square wave current, 1×10^-2, 1×10^-3, 1×10^-4, and 1×10^-5 seconds, 1 Hz, 40 mV, and 10 μA, 30 minutes each, once a day for 10 consecutive days to simulate weak negative electric fields during action potential conduction. MAIN OUTCOME MEASURES: Glial cell growth and wrapping of carbon fibers were observed by phase contrast microscopy and immunohistochemistry. RESULTS: On culture day 7, cell groups were found to adhere to negative carbon fibers in the 1 × 10^-3 seconds square wave group. Cell membrane-like substances grew out of cell groups, wrapped the carbon fibers, and stretched to the ends of carbon fibers. Only some small and round cells close to negative carbon fibers were found on culture day 12. In the 1 × 10^-4 and 1 × 10^-3 seconds square wave groups, the negative carbon fibers were wrapped by oligodendrocytes or their progenitor cells. CONCLUSION: The local negative electric field which is generated by action potentials at 1×(10^-4-10^-3) seconds, 40 mV can directly initiate and participate in myelination in the central nervous system.展开更多
We give the definition of G-inner action of two semilattice graded weak Hopf algebras with the same semilattice Y, and the necessary and sufficient conditions for two G-crossed products to be isomorphic.
This paper describes an extension and a new foundation of the Standard Model of particle physics based on a SU(4)-force called hyper-color, and on preon subparticles. The hyper-color force is a generalization of the S...This paper describes an extension and a new foundation of the Standard Model of particle physics based on a SU(4)-force called hyper-color, and on preon subparticles. The hyper-color force is a generalization of the SU(2)-based weak interaction and the SU(1)-based right-chiral self-interaction, in which the W-and the Z-bosons are Yukawa residual-field-carriers of the hyper-color force, in the same sense as the pions are the residual-field-carriers of the color SU(3) interaction. Using the method of numerical minimization of the SU(4)-action based on this model, the masses and the inner structure of leptons, quarks and weak bosons are calculated: the mass results are very close to the experimental values. We calculate also precisely the value of the Cabibbo angle, so the mixing matrices of the Standard model, CKM matrix for quarks and PMNS matrix for neutrinos can also be calculated. In total, we reduce the 29 parameters of the Standard Model to a total of 7 parameters.展开更多
基金the National Natural Science Foundation of China, No. 30170311Development Program of Chengdu Military Area Command of Chinese PLA during the Tenth-Five-Year Plan Period, No. 04A007
文摘BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath. OBJECTIVE: To investigate the effects of action potential-simulated weak electric fields on myelination in the central nervous system. DESIGN AND SETTING: This single-sample observation study was performed at the 324 Hospital of Chinese PLA. MATERIALS: Two 5 μm carbon fibers were provided by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. One Sprague Dawley rat, aged 1 day, was used. METHODS: Cerebral cortex was harvested from the rat to prepare a suspension [(1 2)× 10^5/mL] containing neurons and glial cells. To simulate the axon, carbon fibers were placed at the bottom of the neuron-glial cell coculture dish, and were electrified with a single phase square wave current, 1×10^-2, 1×10^-3, 1×10^-4, and 1×10^-5 seconds, 1 Hz, 40 mV, and 10 μA, 30 minutes each, once a day for 10 consecutive days to simulate weak negative electric fields during action potential conduction. MAIN OUTCOME MEASURES: Glial cell growth and wrapping of carbon fibers were observed by phase contrast microscopy and immunohistochemistry. RESULTS: On culture day 7, cell groups were found to adhere to negative carbon fibers in the 1 × 10^-3 seconds square wave group. Cell membrane-like substances grew out of cell groups, wrapped the carbon fibers, and stretched to the ends of carbon fibers. Only some small and round cells close to negative carbon fibers were found on culture day 12. In the 1 × 10^-4 and 1 × 10^-3 seconds square wave groups, the negative carbon fibers were wrapped by oligodendrocytes or their progenitor cells. CONCLUSION: The local negative electric field which is generated by action potentials at 1×(10^-4-10^-3) seconds, 40 mV can directly initiate and participate in myelination in the central nervous system.
基金Supported by the Higher Educational Science and Technology Program of Shandong Province(Grant No.J14LI57)the Scientific Research Foundation of Shandong Jiaotong University(Grant No.Z201428)the Research Fund for the Doctoral Program of Shandong Jiaotong Uinversity
文摘We give the definition of G-inner action of two semilattice graded weak Hopf algebras with the same semilattice Y, and the necessary and sufficient conditions for two G-crossed products to be isomorphic.
文摘This paper describes an extension and a new foundation of the Standard Model of particle physics based on a SU(4)-force called hyper-color, and on preon subparticles. The hyper-color force is a generalization of the SU(2)-based weak interaction and the SU(1)-based right-chiral self-interaction, in which the W-and the Z-bosons are Yukawa residual-field-carriers of the hyper-color force, in the same sense as the pions are the residual-field-carriers of the color SU(3) interaction. Using the method of numerical minimization of the SU(4)-action based on this model, the masses and the inner structure of leptons, quarks and weak bosons are calculated: the mass results are very close to the experimental values. We calculate also precisely the value of the Cabibbo angle, so the mixing matrices of the Standard model, CKM matrix for quarks and PMNS matrix for neutrinos can also be calculated. In total, we reduce the 29 parameters of the Standard Model to a total of 7 parameters.