Through analyzing the near-field hydrophone records of the airgun experiment in the Jiemian reservoir,Fujian,we study the time-frequency characteristic of airgun source wavelet and the influence of gun depth and firin...Through analyzing the near-field hydrophone records of the airgun experiment in the Jiemian reservoir,Fujian,we study the time-frequency characteristic of airgun source wavelet and the influence of gun depth and firing pressure,and explain the process of bubble oscillation based on the Johnson( 1994) bubble model. The data analysis shows that:( 1) Airgun wavelet is composed of primary pulse and bubble pulse. The primary pulse,which is of large amplitude,short duration and wide frequency band,is usually used in shallow exploration. The bubble pulse,which is concentrated in the low-frequency range,is usually used in deep exploration with deep vertical penetration and far horizontal propagation.( 2) The variation of primary pulse amplitude with gun depth is very small,bubble pulse amplitude and the dominant frequency increase,and peak-bubble ratio and bubble period decrease. When the gun depth is 10 m,primary pulse amplitude and peakbubble ratio are maximum,which is suitable for shallow exploration; when gun depth is25 m,bubble pulse amplitude is large, and peak-bubble ratio is minimum, which is suitable for deep exploration.( 3) The primary pulse amplitude,bubble pulse amplitude,peak-bubble ratio,and bubble period increase and the dominant frequency decreases with increased firing pressure.展开更多
The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noi...The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noising method can eliminate the interference ofnoise and improve the signal-noise-ratio. This paper uses the local wave method to decompose thede-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally,an example of wavelet packet de-noising and a local wave time-frequency spectrum application ofdiesel engine surface vibration signal is put forward.展开更多
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th...The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).展开更多
Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-or...Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-order spectra is an important new method. However, the higher-order spectra often have phase wrapping problems, which lead to wavelet phase spectrum deviations and thereby affect mixed-phase wavelet estimation. To solve this problem, we propose a new phase spectral method based on conformal mapping in the bispectral domain. The method avoids the phase wrapping problems by narrowing the scope of the Fourier phase spectrum to eliminate the bispectral phase wrapping influence in the original phase spectral estimation. The method constitutes least-squares wavelet phase spectrum estimation based on conformal mapping which is applied to mixed-phase wavelet estimation with the least-squares wavelet amplitude spectrum estimation. Theoretical model and actual seismic data verify the validity of this method. We also extend the idea of conformal mapping in the bispectral wavelet phase spectrum estimation to trispectral wavelet phase spectrum estimation.展开更多
In this study,we report an analysis of cylinder head vibration signals at a steady engine speed using short-time Fourier transform(STFT).Three popular time-frequency analysis techniques,i.e.,STFT,analytic wavelet tran...In this study,we report an analysis of cylinder head vibration signals at a steady engine speed using short-time Fourier transform(STFT).Three popular time-frequency analysis techniques,i.e.,STFT,analytic wavelet transform(AWT) and S transform(ST),have been examined.AWT and ST are often applied in engine signal analyses.In particular,an AWT expression in terms of the quality factor Q and an analytical relationship between ST and AWT have been derived.The time-frequency resolution of a Gaussian function windowed STFT was studied via numerical simulation.Based on the simulation,the empirical limits for the lowest distinguishable frequency as well as the time and frequency resolutions were determined.These can provide insights for window width selection,spectrogram interpretation and artifact identification.Gaussian function windowed STFTs were applied to some cylinder head vibration signals.The spectrograms of the same signals from ST and AWT were also determined for comparison.The results indicate that the uniform resolution feature of STFT is not necessarily a disadvantage for time-frequency analysis of vibration signals when the engine is in stationary state because it can more accurately localize the frequency components excited by transient excitations without much loss of time resolution.展开更多
High-definition(HD)maps are key components that provide rich topologic and semantic information for decision-making in vehicle autonomous driving systems.A complete ground orthophoto is usually used as the base image ...High-definition(HD)maps are key components that provide rich topologic and semantic information for decision-making in vehicle autonomous driving systems.A complete ground orthophoto is usually used as the base image to construct the HD map.The ground orthophoto is obtained through inverse perspective transformation and image mosaicing.During the image mosaicing,multiple consecutive orthophotos are stitched together using pose information and image registration.In this study,wavelet transform is introduced to the image mosaicing process to alleviate the information loss caused by image overlapping.In the orthophoto wavelet transform,high-frequency and low-frequency components are fused using different strategies to form a complete base image with clearer local details.Experimental results show that the accuracy of the orthophotos generated using this method is improved.展开更多
In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) da...In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.展开更多
In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Poste...In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method.展开更多
We used daily return series for three pairs of datasets from the crude oil markets(WTI and Brent),stock indices(the Dow Jones Industrial Average and S&P 500),and benchmark cryptocurrencies(Bitcoin and Ethereum)to ...We used daily return series for three pairs of datasets from the crude oil markets(WTI and Brent),stock indices(the Dow Jones Industrial Average and S&P 500),and benchmark cryptocurrencies(Bitcoin and Ethereum)to examine the connections between various data during the COVID-19 pandemic.We consider two characteristics:time and frequency.Based on Diebold and Yilmaz’s(Int J Forecast 28:57-66,2012)technique,our findings indicate that comparable data have a substantially stronger correlation(regarding return)than volatility.Per Baruník and Křehlík’(J Financ Econ 16:271-296,2018)approach,interconnectedness among returns(volatilities)reduces(increases)as one moves from the short to the long term.A moving window analysis reveals a sudden increase in correlation,both in volatility and return,during the COVID-19 pandemic.In the context of wavelet coherence analysis,we observe a strong interconnection between data corresponding to the COVID-19 outbreak.The only exceptions are the behavior of Bitcoin and Ethereum.Specifically,Bitcoin combinations with other data exhibit a distinct behavior.The period precisely coincides with the COVID-19 pandemic.Evidently,volatility spillover has a long-lasting impact;policymakers should thus employ the appropriate tools to mitigate the severity of the relevant shocks(e.g.,the COVID-19 pandemic)and simultaneously reduce its side effects.展开更多
A novel method of EEG time-frequency analysis and representation based on a wavelet network is presented. The wavelet network model can represent the EEG data effectively. Based on the wavelet network model, a novel t...A novel method of EEG time-frequency analysis and representation based on a wavelet network is presented. The wavelet network model can represent the EEG data effectively. Based on the wavelet network model, a novel time-frequency energy distribution function is obtained, which has the same time-frequency resolution as Wigner-Ville distribution and is free of cross-term interference. There is a great potential for the use of the novel time-frequency representation of nonstationary biosignal based on a wavelet network in the field of the electrophysiological signal processing and time-frequency analysis.展开更多
The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time vari...The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.展开更多
The harmonic wavelet transform(HWT)and its fast realization based on fast Fourier transform(FFT)are introduced.Its ability to maintain the same amplitude-frequency feature is revealed.A new method to construct the tim...The harmonic wavelet transform(HWT)and its fast realization based on fast Fourier transform(FFT)are introduced.Its ability to maintain the same amplitude-frequency feature is revealed.A new method to construct the time-frequency(TF)spectrum of HWT is proposed,which makes the HWT TF spectrum able to correctly reflect the time-frequency-amplitude distribution of the signal.A new way to calculate the HWT coefficients is proposed.By zero padding the data taken out,the non-decimated coefficients of HWT are obtained.Theoretical analysis shows that the modulus of the coefficients obtained by the new calculation way and living at a certain scale are the envelope of the component in the corresponding frequency band.By taking the cross section of the new TF spectrum,the demodulation for the component at a certain frequency band can be realized.A comparison with the Hilbert demodulation combined with band-pass filtering is done,which indicates for multi-components,the method proposed here is more suitable since it realizes ideal band-pass filtering and avoids pass band selecting.In the end,it is applied to bearing and gearbox fault diagnosis,and the results reflect that it can effectively extract the fault features in the signal.展开更多
The theory of detecling ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges,To periodic signal we suppose Morlet wavelet as basic wave...The theory of detecling ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges,To periodic signal we suppose Morlet wavelet as basic wavelet, and research the local extreme point and extrema of the wavelet transform on periodic function for the collection of signal' s instantaneous amplitude and period.展开更多
Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodol...Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization.展开更多
Based on the simple hinge crack model and the local flexibility theorem, thecorresponding dynamic equation of the cracked rotor is modelled, the numerical simulation solutionsof the cracked rotor and the uncracked rot...Based on the simple hinge crack model and the local flexibility theorem, thecorresponding dynamic equation of the cracked rotor is modelled, the numerical simulation solutionsof the cracked rotor and the uncracked rotor are obtained. By the continuous wavelet time-frequencytransform, the wavelet time-frequency properties of the uncracked rotor and the cracked rotor arediscussed. A new detection algorithm that uses the wavelet time-frequency transform to identify thecrack is proposed. The influence of the sampling frequency on the wavelet time-frequency transformis analyzed by the numerical simulation research. The valid sampling frequency is suggested.Experiments demonstrate the validity and availability of the proposed algorithm in identification ofthe cracked rotor for engineering practices.展开更多
Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image w...Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties.This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform(DWT),Z-transform(ZT)and Bidiagonal Singular Value Decomposition(BSVD).The original image is decomposed into 3-level DWT,and then,ZT is applied on the HH3 and HL3 sub-bands.The watermark image is encrypted using Arnold Cat Map.BSVD for the watermark and transformed original image were computed,and the watermark was embedded by modifying singular values of the host image with the singular values of the watermark image.Robustness of the proposed scheme was examined using standard test images and assessed against common signal processing and geometric attacks.Experiments indicated that the proposed method is transparent and highly robust.展开更多
The Bouguer gravity anomaly data of Sichuan-Yunnan region and its vicinity were analyzed with wavelet trans- formation method. In the process, complete orthogonal wavelet function system with good symmetry and higher ...The Bouguer gravity anomaly data of Sichuan-Yunnan region and its vicinity were analyzed with wavelet trans- formation method. In the process, complete orthogonal wavelet function system with good symmetry and higher vanishing moment was selected to decompose the gravity anomaly into two parts. With the power spectral analysis on the decomposed anomalies, we interpreted that the two parts of anomalies represent the density variation in upper and middle crust, and in deep crust and uppermost mantle, respectively. The two parts of anomalies indicate the difference between shallow and deep tectonics. The results of shallow-layer apparent density mapping reveal that: a) the crustal density in Sichuan basin is higher than that in Songpan-Garze orogenic zone; b) the density of Kangdian rhombic block is heterogeneous; c) the boundary faults of Kangdian block are of different density fea- tures, suggesting different tectonic signification. The results of deep-layer apparent density mapping show a similar, but not the same, density distribution pattern as the shallow results, and indicate that the tectonics of shallow and deep crust are different, they may be in a status of incomplete coupling. Our results also show that the earthquakes in this area are controlled not only by the fracture zones but also by the deep density distribution.展开更多
基金jointly sponsored the Special Fund for Earthquake Scientific Research of China Earthquake Administration(2015419015)the National Natural Sciences Foundation of China(41474071)
文摘Through analyzing the near-field hydrophone records of the airgun experiment in the Jiemian reservoir,Fujian,we study the time-frequency characteristic of airgun source wavelet and the influence of gun depth and firing pressure,and explain the process of bubble oscillation based on the Johnson( 1994) bubble model. The data analysis shows that:( 1) Airgun wavelet is composed of primary pulse and bubble pulse. The primary pulse,which is of large amplitude,short duration and wide frequency band,is usually used in shallow exploration. The bubble pulse,which is concentrated in the low-frequency range,is usually used in deep exploration with deep vertical penetration and far horizontal propagation.( 2) The variation of primary pulse amplitude with gun depth is very small,bubble pulse amplitude and the dominant frequency increase,and peak-bubble ratio and bubble period decrease. When the gun depth is 10 m,primary pulse amplitude and peakbubble ratio are maximum,which is suitable for shallow exploration; when gun depth is25 m,bubble pulse amplitude is large, and peak-bubble ratio is minimum, which is suitable for deep exploration.( 3) The primary pulse amplitude,bubble pulse amplitude,peak-bubble ratio,and bubble period increase and the dominant frequency decreases with increased firing pressure.
文摘The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noising method can eliminate the interference ofnoise and improve the signal-noise-ratio. This paper uses the local wave method to decompose thede-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally,an example of wavelet packet de-noising and a local wave time-frequency spectrum application ofdiesel engine surface vibration signal is put forward.
基金financially supported by the National 973 Project(No.2014CB239006)the National Natural Science Foundation of China(No.41104069 and 41274124)the Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).
基金supported by National 973 Program (No. 2007CB209600)
文摘Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose preciseness is directly related to the results of deconvolution and inversion. Wavelet estimation based on higher-order spectra is an important new method. However, the higher-order spectra often have phase wrapping problems, which lead to wavelet phase spectrum deviations and thereby affect mixed-phase wavelet estimation. To solve this problem, we propose a new phase spectral method based on conformal mapping in the bispectral domain. The method avoids the phase wrapping problems by narrowing the scope of the Fourier phase spectrum to eliminate the bispectral phase wrapping influence in the original phase spectral estimation. The method constitutes least-squares wavelet phase spectrum estimation based on conformal mapping which is applied to mixed-phase wavelet estimation with the least-squares wavelet amplitude spectrum estimation. Theoretical model and actual seismic data verify the validity of this method. We also extend the idea of conformal mapping in the bispectral wavelet phase spectrum estimation to trispectral wavelet phase spectrum estimation.
基金Project (No. 2011BAE22B05) supported by the National Key Technologies Supporting Program of China during the 12th Five-Year Plan Period
文摘In this study,we report an analysis of cylinder head vibration signals at a steady engine speed using short-time Fourier transform(STFT).Three popular time-frequency analysis techniques,i.e.,STFT,analytic wavelet transform(AWT) and S transform(ST),have been examined.AWT and ST are often applied in engine signal analyses.In particular,an AWT expression in terms of the quality factor Q and an analytical relationship between ST and AWT have been derived.The time-frequency resolution of a Gaussian function windowed STFT was studied via numerical simulation.Based on the simulation,the empirical limits for the lowest distinguishable frequency as well as the time and frequency resolutions were determined.These can provide insights for window width selection,spectrogram interpretation and artifact identification.Gaussian function windowed STFTs were applied to some cylinder head vibration signals.The spectrograms of the same signals from ST and AWT were also determined for comparison.The results indicate that the uniform resolution feature of STFT is not necessarily a disadvantage for time-frequency analysis of vibration signals when the engine is in stationary state because it can more accurately localize the frequency components excited by transient excitations without much loss of time resolution.
基金the National Natural Science Foundation of China(No.U1764264/61873165)the Shanghai Automotive Industry Science and Technology Development Foundation(No.1807)the Guangxi Key Laboratory of Automobile Components and Vehicle Technology Research Project(No.2020GKLACVTKF02)。
文摘High-definition(HD)maps are key components that provide rich topologic and semantic information for decision-making in vehicle autonomous driving systems.A complete ground orthophoto is usually used as the base image to construct the HD map.The ground orthophoto is obtained through inverse perspective transformation and image mosaicing.During the image mosaicing,multiple consecutive orthophotos are stitched together using pose information and image registration.In this study,wavelet transform is introduced to the image mosaicing process to alleviate the information loss caused by image overlapping.In the orthophoto wavelet transform,high-frequency and low-frequency components are fused using different strategies to form a complete base image with clearer local details.Experimental results show that the accuracy of the orthophotos generated using this method is improved.
基金Supported by the National Natural Science Foundation of China(No.81222021,No.61172008,No.81171423)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618)
文摘In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.
文摘In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method.
文摘We used daily return series for three pairs of datasets from the crude oil markets(WTI and Brent),stock indices(the Dow Jones Industrial Average and S&P 500),and benchmark cryptocurrencies(Bitcoin and Ethereum)to examine the connections between various data during the COVID-19 pandemic.We consider two characteristics:time and frequency.Based on Diebold and Yilmaz’s(Int J Forecast 28:57-66,2012)technique,our findings indicate that comparable data have a substantially stronger correlation(regarding return)than volatility.Per Baruník and Křehlík’(J Financ Econ 16:271-296,2018)approach,interconnectedness among returns(volatilities)reduces(increases)as one moves from the short to the long term.A moving window analysis reveals a sudden increase in correlation,both in volatility and return,during the COVID-19 pandemic.In the context of wavelet coherence analysis,we observe a strong interconnection between data corresponding to the COVID-19 outbreak.The only exceptions are the behavior of Bitcoin and Ethereum.Specifically,Bitcoin combinations with other data exhibit a distinct behavior.The period precisely coincides with the COVID-19 pandemic.Evidently,volatility spillover has a long-lasting impact;policymakers should thus employ the appropriate tools to mitigate the severity of the relevant shocks(e.g.,the COVID-19 pandemic)and simultaneously reduce its side effects.
基金This work is Funded in part by the Science Foundation of Shandong Province (No.Y2000C25 and No.Y2001C02)
文摘A novel method of EEG time-frequency analysis and representation based on a wavelet network is presented. The wavelet network model can represent the EEG data effectively. Based on the wavelet network model, a novel time-frequency energy distribution function is obtained, which has the same time-frequency resolution as Wigner-Ville distribution and is free of cross-term interference. There is a great potential for the use of the novel time-frequency representation of nonstationary biosignal based on a wavelet network in the field of the electrophysiological signal processing and time-frequency analysis.
基金National Science Foundation Grant NSF CMS CAREER Under Grant No.9996290NSF CMMI Under Grant No.0830391
文摘The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.
基金supported by National Natural Science Foundation of China(Grant No.50575233)National Hi-tech Research and Development Program of China(Grant No.2008AA042408)
文摘The harmonic wavelet transform(HWT)and its fast realization based on fast Fourier transform(FFT)are introduced.Its ability to maintain the same amplitude-frequency feature is revealed.A new method to construct the time-frequency(TF)spectrum of HWT is proposed,which makes the HWT TF spectrum able to correctly reflect the time-frequency-amplitude distribution of the signal.A new way to calculate the HWT coefficients is proposed.By zero padding the data taken out,the non-decimated coefficients of HWT are obtained.Theoretical analysis shows that the modulus of the coefficients obtained by the new calculation way and living at a certain scale are the envelope of the component in the corresponding frequency band.By taking the cross section of the new TF spectrum,the demodulation for the component at a certain frequency band can be realized.A comparison with the Hilbert demodulation combined with band-pass filtering is done,which indicates for multi-components,the method proposed here is more suitable since it realizes ideal band-pass filtering and avoids pass band selecting.In the end,it is applied to bearing and gearbox fault diagnosis,and the results reflect that it can effectively extract the fault features in the signal.
基金Supported by the National Natural Science Founda-tion of China (49771060)
文摘The theory of detecling ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges,To periodic signal we suppose Morlet wavelet as basic wavelet, and research the local extreme point and extrema of the wavelet transform on periodic function for the collection of signal' s instantaneous amplitude and period.
文摘Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization.
基金This project is supported by National Natural Science Foundation of China (No.10176014) National Fundamental Foundation of Research and Development of China (No.G1998020321).
文摘Based on the simple hinge crack model and the local flexibility theorem, thecorresponding dynamic equation of the cracked rotor is modelled, the numerical simulation solutionsof the cracked rotor and the uncracked rotor are obtained. By the continuous wavelet time-frequencytransform, the wavelet time-frequency properties of the uncracked rotor and the cracked rotor arediscussed. A new detection algorithm that uses the wavelet time-frequency transform to identify thecrack is proposed. The influence of the sampling frequency on the wavelet time-frequency transformis analyzed by the numerical simulation research. The valid sampling frequency is suggested.Experiments demonstrate the validity and availability of the proposed algorithm in identification ofthe cracked rotor for engineering practices.
文摘Watermarking is a widely used solution to the problems of authentication and copyright protection of digital media especially for images,videos,and audio data.Chaos is one of the emerging techniques adopted in image watermarking schemes due to its intrinsic cryptographic properties.This paper proposes a new chaotic hybrid watermarking method combining Discrete Wavelet Transform(DWT),Z-transform(ZT)and Bidiagonal Singular Value Decomposition(BSVD).The original image is decomposed into 3-level DWT,and then,ZT is applied on the HH3 and HL3 sub-bands.The watermark image is encrypted using Arnold Cat Map.BSVD for the watermark and transformed original image were computed,and the watermark was embedded by modifying singular values of the host image with the singular values of the watermark image.Robustness of the proposed scheme was examined using standard test images and assessed against common signal processing and geometric attacks.Experiments indicated that the proposed method is transparent and highly robust.
基金National Natural Science Foundation of China (403334041)
文摘The Bouguer gravity anomaly data of Sichuan-Yunnan region and its vicinity were analyzed with wavelet trans- formation method. In the process, complete orthogonal wavelet function system with good symmetry and higher vanishing moment was selected to decompose the gravity anomaly into two parts. With the power spectral analysis on the decomposed anomalies, we interpreted that the two parts of anomalies represent the density variation in upper and middle crust, and in deep crust and uppermost mantle, respectively. The two parts of anomalies indicate the difference between shallow and deep tectonics. The results of shallow-layer apparent density mapping reveal that: a) the crustal density in Sichuan basin is higher than that in Songpan-Garze orogenic zone; b) the density of Kangdian rhombic block is heterogeneous; c) the boundary faults of Kangdian block are of different density fea- tures, suggesting different tectonic signification. The results of deep-layer apparent density mapping show a similar, but not the same, density distribution pattern as the shallow results, and indicate that the tectonics of shallow and deep crust are different, they may be in a status of incomplete coupling. Our results also show that the earthquakes in this area are controlled not only by the fracture zones but also by the deep density distribution.