期刊文献+
共找到317篇文章
< 1 2 16 >
每页显示 20 50 100
Wavelet Thresholding Denoising Method for Satellite Clock Bias Data Processing Based on Interval Correlation Coefficient
1
作者 WANG Xu 《Journal of Geodesy and Geoinformation Science》 2025年第3期53-69,共17页
A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias pr... A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias prediction.Wavelet analysis was first used to break down the satellite clock frequency data into several levels,producing high and low frequency coefficients for each layer.The correlation coefficients of the high and low frequency coefficients in each of the three sub-intervals created by splitting these coefficients were then determined.The major noise region—the sub-interval with the lowest correlation coefficient—was chosen for thresholding treatment and noise threshold computation.The clock frequency data was then processed using wavelet reconstruction and reconverted to clock data.Lastly,three different kinds of satellite clock data—RTS,whu-o,and IGS-F—were used to confirm the produced data.Our method enhanced the stability of the Quadratic Polynomial(QP)model’s predictions for the C16 satellite by about 40%,according to the results.The accuracy and stability of the Auto Regression Integrated Moving Average(ARIMA)model improved up to 41.8%and 14.2%,respectively,whilst the Wavelet Neural Network(WNN)model improved by roughly 27.8%and 63.6%,respectively.Although our method has little effect on forecasting IGS-F series satellites,the experimental findings show that it can improve the accuracy and stability of QP,ARIMA,and WNN model forecasts for RTS and whu-o satellite clock bias. 展开更多
关键词 satellite clock bias correlation coefficient wavelet threshold method FORECAST
在线阅读 下载PDF
Reduction of ultrasonic echo noise based on improved wavelet threshold de-noising algorithm for friction welding
2
作者 尹欣 张臻 王旻 《China Welding》 EI CAS 2010年第3期61-65,共5页
In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on... In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on the multi-resolution analysis wavelet threshold de-noising method which was put forward by Donoho and Johnstone, and applied this method in the de-noising of the defective signals. This threshold function overcomes the discontinuous shortcoming of the hard-threshold function and the disadvantage of soft threshold function which causes an invariable deviation between the estimated wavelet coeffwients and the decomposed wavelet coefficients. The improved threshold function is of simple expression and convenient for calculation. The actual test results of defect noise signal show that this improved method can get less mean square error ( MSE ) and higher signal-to-noise ratio of reconstructed signals than those calculated from hard threshold and soft threshold methods. The improved threshold function has excellent de-noising effect. 展开更多
关键词 wavelet threshold friction welding de-noising improved algorithm
在线阅读 下载PDF
Research and Application of New Threshold De-noising Algorithm for Monitoring Data Analysis in Nuclear Power Plant 被引量:4
3
作者 崔妍 陈世均 +1 位作者 瞿勐 何善红 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第3期355-360,共6页
Under the complex condition of nuclear power plant, all kinds of influence factors may cause distortion of on-line monitoring data. It is essential that on-line monitoring data should be de-noised in order to ensure t... Under the complex condition of nuclear power plant, all kinds of influence factors may cause distortion of on-line monitoring data. It is essential that on-line monitoring data should be de-noised in order to ensure the accuracy of diagnosis. Based on the research of wavelet analysis and threshold de-noising, a new threshold denoising method based on Mallat transform is proposed. This method adopts factor weighing method for threshold quantization. Through the specific case of nuclear power plant, it is verified that the algorithm is of validity and superiority. 展开更多
关键词 wavelet analysis Mallat transform threshold de-noising factor weighing method
原文传递
Fault Diagnosis for Key Components of Metro Vehicles based on Wavelet Threshold Denoising and EEMD
4
作者 Xichun Luo Haoran Hu 《Journal of Electronic Research and Application》 2025年第3期10-19,共10页
With the increasing adoption of intelligent operation and maintenance technologies in urban rail transit,most maintenance systems have been equipped with fault diagnosis modules targeting key components of metro vehic... With the increasing adoption of intelligent operation and maintenance technologies in urban rail transit,most maintenance systems have been equipped with fault diagnosis modules targeting key components of metro vehicles.However,the integration between engineering-level diagnostic algorithms and advanced academic research remains limited.Two major challenges hinder vibration-based fault diagnosis under real-world operating conditions:the complex noise and interference caused by wheel-rail coupling and the typically weak expression of fault features.Considering the widespread application of wavelet transform in noise reduction and the maturity of ensemble empirical mode decomposition(EEMD)in handling nonlinear and non-stationary signals without parameter tuning,this study proposes a diagnostic method that combines wavelet threshold denoising with EEMD.The method was applied to bearing vibration signals collected from an operational subway line.The diagnostic results were consistent with actual disassembly findings,demonstrating the effectiveness and practical value of the proposed approach. 展开更多
关键词 Metro vehicles Fault diagnosis wavelet threshold de-noising Ensemble empirical mode decomposition
在线阅读 下载PDF
A real-time 5/3 lifting wavelet HD-video de-noising system based on FPGA
5
作者 黄巧洁 Liu Jiancheng 《High Technology Letters》 EI CAS 2017年第2期212-220,共9页
In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field... In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field-programmable gate array(FPGA),which uses a 3-level pipeline paralleled 5/3 lifting wavelet transformation and reconstruction structure,as well as a fast BayesS hrink adaptive threshold filtering module.The proposed system demonstrates de-noising performance,while also balancing system resources and achieving real-time processing.The experiments show that the proposed system's maximum operating frequency(through logic synthesis and layout using Quartus 13.1 software) can reach 178 MHz,based on the Altera Company's Stratix III EP3SE80 series FPGA.The proposed system can also satisfy real-time de-noising requirements of 1920 × 1080 at60 fps HD-video sources,while also significantly improving the peak signal to noise rate of the denoising images.Compared with similar systems,the system has the advantages of high operating frequency,and the ability to support multiple source formats for real-time processing. 展开更多
关键词 video surveillance threshold filtering discrete wavelet transformation DWT) field-programmable gate array (FPGA) de-noising
在线阅读 下载PDF
Neurochip based on light-addressable potentiometric sensor with wavelet transform de-noising
6
作者 Qing-jun LIU Wei-wei YE +3 位作者 Hui YU Ning HU Li-ping DU Ping WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2010年第5期323-331,共9页
Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.H... Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.Here we report a kind of neurochip with rat pheochromocytoma(PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform.Cells were cultured on LAPS for several days to form networks,and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space.The signal was decomposed into various scales,and coefficients were processed based on the properties of each layer.At last,signal was reconstructed based on the new coefficients.The results show that after de-noising,baseline drift is removed and signal-to-noise ratio is increased.It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform,taking advantage of its time-frequency localization analysis to reduce noise. 展开更多
关键词 Neurochip Light-addressable potentiometric sensor(LAPS) wavelet transform threshold de-noising
原文传递
Implementation of GPR Signals De-Noising Based on DSP
7
作者 CHEN Xiao-li TIAN Mao ZHOU Hui-lin 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第6期1005-1008,共4页
An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single process... An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis. 展开更多
关键词 wavelet shrinkage de-noising GPR digital signal processor real time soft thresholding SNR
在线阅读 下载PDF
A novel wavelet method for electric signals analysis in underwater arc welding
8
作者 张为民 王国荣 +1 位作者 石永华 钟碧良 《China Welding》 EI CAS 2009年第2期12-16,共5页
Electric signals are acquired and analyzed in order to monitor the underwater arc welding process. Voltage break point and magnitude are extracted by detecting arc voltage singularity through the modulus maximum wavel... Electric signals are acquired and analyzed in order to monitor the underwater arc welding process. Voltage break point and magnitude are extracted by detecting arc voltage singularity through the modulus maximum wavelet (MMW) method. A novel threshold algorithm, which compromises the hard-threshold wavelet (HTW) and soft-threshold wavelet (STW) methods, is investigated to eliminate welding current noise. Finally, advantages over traditional wavelet methods are verified by both simulation and experimental results. 展开更多
关键词 underwater arc welding electric signals wavelet method threshold algorithm
在线阅读 下载PDF
Neutron-gamma discrimination method based on blind source separation and machine learning 被引量:6
9
作者 Hanan Arahmane El-Mehdi Hamzaoui +1 位作者 Yann Ben Maissa Rajaa Cherkaoui El Moursli 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第2期70-80,共11页
The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimina... The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20). 展开更多
关键词 Blind source separation Nonnegative tensor factorization(NTF) Support vector machines(SVM) Continuous wavelets transform(CWT) Otsu thresholding method
在线阅读 下载PDF
光照不均匀条件下无人机航拍低照度图像增强方法 被引量:1
10
作者 黄静 欧余韬 《现代电子技术》 北大核心 2025年第1期55-59,共5页
增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过... 增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过小波分解得到图像的高频参数和低频参数,分别通过双边滤波算法、软阈值方法和直方图对图像的低频参数和高频参数进行增强,采用小波重构对增强后的图像高频参数和低频参数进行重构,得到增强后的无人机航拍图像。通过实验验证,该方法能够实现一种效果较好的图像增强,在原始图像基础上,通过文中方法增强原始亮度8.14%、对比度提高了37.90%以及清晰度增加了31.01%,使得图像的整体质量得到了显著提升,为后续的图像分析、处理提供了更加准确、丰富的信息。 展开更多
关键词 无人机航拍 低照度图像增强 高斯滤波 小波分解与重构 双边滤波算法 软阈值方法
在线阅读 下载PDF
改进小波阈值算法在井地电磁法物理模拟信号处理中的应用
11
作者 刘永雷 彭媛慧 +4 位作者 曹辉 程明华 段野 米小利 杨云见 《物探化探计算技术》 2025年第5期707-716,共10页
井地电磁法在深地勘探、油气藏圈定、储层分布研究及油井注水或注浆动态监测中具有重要应用潜力,但野外采集的井地电磁数据常受随机噪声干扰,影响数据解释。针对传统小波去噪方法的不足,笔者提出了一种基于广义交叉验证(GCV)准则和灰狼... 井地电磁法在深地勘探、油气藏圈定、储层分布研究及油井注水或注浆动态监测中具有重要应用潜力,但野外采集的井地电磁数据常受随机噪声干扰,影响数据解释。针对传统小波去噪方法的不足,笔者提出了一种基于广义交叉验证(GCV)准则和灰狼优化(GWO)的组合小波去噪方法。通过仿真实验和加入50 Hz工频噪声的物理模拟数据验证,该方法显著提高了信噪比,降低了均方误差,有效去噪并保留了信号特征,为井地电磁法数据解释的准确性和可靠性提供了支持。. 展开更多
关键词 井地电磁法 物理模拟实验数据 广义交叉验证 灰狼优化算法 小波阈值去噪
在线阅读 下载PDF
基于ICEEMDAN-改进小波阈值法的爆破振动信号消噪分析 被引量:1
12
作者 张文涛 汪海波 +3 位作者 高朋飞 王梦想 程兵 宗琦 《工程爆破》 北大核心 2025年第2期157-168,共12页
为了更好地消除噪声成分对爆破振动信号的影响,构建了ICEEMDAN算法联合改进小波阈值法的消噪方法。首先使用ICEEMDAN算法对实测信号分解得到一系列IMF分量,然后通过互相关分析、频谱分析和交叉小波相干分析确定高频噪声分量、含噪分量... 为了更好地消除噪声成分对爆破振动信号的影响,构建了ICEEMDAN算法联合改进小波阈值法的消噪方法。首先使用ICEEMDAN算法对实测信号分解得到一系列IMF分量,然后通过互相关分析、频谱分析和交叉小波相干分析确定高频噪声分量、含噪分量、趋势项分量,利用改进的小波阈值法提取含噪分量中的真实信息,剔除噪声成分后将剩余分量相加重构信号。通过信号重构前后的波形、三维时频谱对消噪效果进行评价,并采用信噪比、均方根误差等指标对6种消噪方法的降噪效果进行对比。结果表明:ICEEMDAN-改进小波阈值法能在保存爆破振动信号真实信息的前提下精准消除噪声成分;与其他5种方法相比,该方法消噪重构后信号的信噪比最高、均方根误差最小,分别为28.73 dB、0.0022,在时域和频域均表现出较好的消噪能力。 展开更多
关键词 爆破振动信号 消噪 ICEEMDAN 小波阈值法
在线阅读 下载PDF
基于VMD和广义延拓逼近的时间差估计算法
13
作者 肖江宁 尚俊娜 霍刚 《传感技术学报》 北大核心 2025年第3期468-476,共9页
由于相关类时差估计算法在低信噪比情况下,其相关函数包络的峰值波动较大,从而严重影响时差估计的准确性,提出了一种基于变分模态分解和广义延拓逼近的时差估计算法。该算法主要从信号接收端、信号处理端和相关函数峰值取值这三个方面... 由于相关类时差估计算法在低信噪比情况下,其相关函数包络的峰值波动较大,从而严重影响时差估计的准确性,提出了一种基于变分模态分解和广义延拓逼近的时差估计算法。该算法主要从信号接收端、信号处理端和相关函数峰值取值这三个方面进行优化。在信号接收端,分别利用变分模态分解和小波阈值降噪对接收信号进行降噪处理;在信号处理端,利用广义二次相关法得到相关函数包络;最后采用广义延拓逼近法对相关函数包络的谱峰进行插值处理。实验结果表明,所提算法的均方根误差远小于广义二次相关法。 展开更多
关键词 无源定位 时差估计算法 广义二次互相关 变分模态分解 小波阈值降噪 广义延拓逼近法
在线阅读 下载PDF
Classified denoising method for laser point cloud data of stored grain bulk surface based on discrete wavelet threshold 被引量:1
14
作者 Shao Qing Xu Tao +2 位作者 Yoshino Tatsuo Song Nan Zhu Hang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2016年第4期123-131,共9页
Surfaces of stored grain bulk are often reconstructed from organized point sets with noise by 3-D laser scanner in an online measuring system.As a result,denoising is an essential procedure in processing point cloud d... Surfaces of stored grain bulk are often reconstructed from organized point sets with noise by 3-D laser scanner in an online measuring system.As a result,denoising is an essential procedure in processing point cloud data for more accurate surface reconstruction and grain volume calculation.A classified denoising method was presented in this research for noise removal from point cloud data of the grain bulk surface.Based on the distribution characteristics of cloud point data,the noisy points were divided into three types:The first and second types of the noisy points were either sparse points or small point cloud data deviating and suspending from the main point cloud data,which could be deleted directly by a grid method;the third type of the noisy points was mixed with the main body of point cloud data,which were most difficult to distinguish.The point cloud data with those noisy points were projected into a horizontal plane.An image denoising method,discrete wavelet threshold(DWT)method,was applied to delete the third type of the noisy points.Three kinds of denoising methods including average filtering method,median filtering method and DWT method were applied respectively and compared for denoising the point cloud data.Experimental results show that the proposed method remains the most of the details and obtains the lowest average value of RMSE(Root Mean Square Error,0.219)as well as the lowest relative error of grain volume(0.086%)compared with the other two methods.Furthermore,the proposed denoising method could not only achieve the aim of removing noisy points,but also improve self-adaptive ability according to the characteristics of point cloud data of grain bulk surface.The results from this research also indicate that the proposed method is effective for denoising noisy points and provides more accurate data for calculating grain volume. 展开更多
关键词 point cloud data DENOISING grid method discrete wavelet threshold(DWT)method 3-D laser scanning stored grain
原文传递
SSA-VMD联合改进小波阈值去噪算法在局部放电中应用
15
作者 孟小斐 刘红兵 《电工电气》 2025年第3期29-34,40,共7页
针对电力设备局部放电信号的噪声干扰问题,提出了一种麻雀搜索算法(SSA)、变分模态分解(VMD)与改进小波阈值去噪法相结合的去噪算法。以排列熵作为适应度函数,使用麻雀搜索算法确定变分模态分解的模态数和惩罚因子并将含噪局放信号拆分... 针对电力设备局部放电信号的噪声干扰问题,提出了一种麻雀搜索算法(SSA)、变分模态分解(VMD)与改进小波阈值去噪法相结合的去噪算法。以排列熵作为适应度函数,使用麻雀搜索算法确定变分模态分解的模态数和惩罚因子并将含噪局放信号拆分成多个固有模态分量,再根据样本熵确定有效阈值和去噪阈值。将样本熵大于有效阈值的模态分量视为噪声分量剔除,将样本熵小于有效阈值且大于去噪阈值的模态分量进行改进小波阈值法处理,将去噪后的模态分量和小于去噪阈值的模态重构完成信号去噪。在MATLAB软件中进行对比仿真实验,该算法在信噪比x_(SNR)和均方根误差x_(RMSE)方面均有提升且保留了原始信号中的有效信息,验证了其有效性。 展开更多
关键词 信号去噪 变分模态分解 麻雀搜索算法 局部放电 改进小波阈值法
在线阅读 下载PDF
油气管道光纤安全监测的数据采集和处理方法
16
作者 夏宇 田晓龙 +2 位作者 卢存海 蔡毅 游东东 《煤气与热力》 2025年第3期I0008-I0015,共8页
利用完全自适应噪声集合经验模态分解和改进小波阈值的联合去噪方法(CEEMDAN-WTS方法)对分布式光纤传感器油气管道安全监测数据进行去噪。对比CEEMDAN-WTS方法、小波半软阈值方法、完全自适应噪声集合经验模态分解和小波阈值的联合去噪... 利用完全自适应噪声集合经验模态分解和改进小波阈值的联合去噪方法(CEEMDAN-WTS方法)对分布式光纤传感器油气管道安全监测数据进行去噪。对比CEEMDAN-WTS方法、小波半软阈值方法、完全自适应噪声集合经验模态分解和小波阈值的联合去噪方法(CEEMDAN-WT方法)的去噪效果。从时域信号图可以看出,CEEMDAN-WTS方法能有效保留原始信号峰值部分,同时更好地去除噪声,更能凸显曲线的主要趋势。CEEMDAN-WTS方法敲击工况信噪比增益相较于小波半软阈值方法和CEEMDAN-WT方法分别提升42.6%和17.4%,泄漏工况信噪比增益相较于小波半软阈值方法和CEEMDAN-WT方法分别提升94.6%和47.3%,表明去噪后的数据信号和噪声比大幅度提高,有效消除油气管道光纤信号中的环境噪声。CEEMDAN-WTS方法敲击工况均方根误差相较于小波半软阈值方法和CEEMDAN-WT方法分别降低30.9%和14.6%,泄漏工况均方根误差相较于小波半软阈值方法和CEEMDAN-WT方法分别降低20.4%和5.9%,这表明CEEMDAN-WTS方法去噪后的信号与原始信号之间的误差更小。结合信噪比增益的特点可以得出,CEEMDAN-WTS方法在有效降低信号噪声的同时最大程度保留原始信号特征,更好地避免因去噪造成的信号失真。 展开更多
关键词 油气管道安全 分布式光纤传感器 改进小波阈值去噪 CEEMDAN-WTS方法
在线阅读 下载PDF
Mechanical response identification of local interconnections in board- level packaging structures under projectile penetration using Bayesian regularization
17
作者 Xu Long Yuntao Hu Irfan Ali 《Defence Technology(防务技术)》 2025年第7期79-95,共17页
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to... Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions. 展开更多
关键词 Board-level packaging structure High strain-rate constitutive model Load identification Bayesian regularization wavelet thresholding method
在线阅读 下载PDF
基于EMD-小波阈值-LSTM模型的混凝土坝变形预测
18
作者 欧斌 张才溢 +4 位作者 陈德辉 王子轩 杨石勇 杨霖 傅蜀燕 《排灌机械工程学报》 北大核心 2025年第4期379-386,共8页
变形是混凝土坝结构性态演化的综合表征,是大坝安全监控的核心指标,但其量级微小且包含噪声.为提高混凝土坝变形预测的精度,首先采用经验模态法(EMD)对大坝变形监测数据进行预处理,将复杂的信号分解成若干个由高到低的固有模态函数(IMF... 变形是混凝土坝结构性态演化的综合表征,是大坝安全监控的核心指标,但其量级微小且包含噪声.为提高混凝土坝变形预测的精度,首先采用经验模态法(EMD)对大坝变形监测数据进行预处理,将复杂的信号分解成若干个由高到低的固有模态函数(IMF)分量,从而挖掘数据的规律与特征.对高频IMF分量运用小波阈值进行分解降噪,以消除噪声干扰.最后,将降噪后的IMF分量进行组合重构,实现原始变形数据的降噪提质.在此基础上,将重构后数据再运用长短期记忆神经网络(LSTM)进行预测.实例验证表明,改进EMD-LSTM模型在预测能力和精度上均显著优于传统的EMD-LSTM和小波-LSTM模型,为大坝的安全监测和运维提供了新的有效工具,有助于精准掌握大坝的结构性态,确保其安全稳定运行. 展开更多
关键词 变形预测 混凝土坝 经验模态法 小波阈值 长短期记忆神经网络
在线阅读 下载PDF
基于改进小波阈值法的气液两相流特征提取及流型识别
19
作者 陈立 杜燕连 +3 位作者 彭甫森 韩振华 阮荣倩 沈义俊 《矿冶工程》 北大核心 2025年第3期35-43,共9页
对垂直管道气力提升实验中采集的气液两相流的压力信号进行小波分析,通过改善信噪比确定最佳小波基函数。根据小波细节系数能量变化确定分解层数范围,采用熵权法结合信噪比、均方根误差以及平滑度确定最佳分解层数。对小波阈值去噪后的... 对垂直管道气力提升实验中采集的气液两相流的压力信号进行小波分析,通过改善信噪比确定最佳小波基函数。根据小波细节系数能量变化确定分解层数范围,采用熵权法结合信噪比、均方根误差以及平滑度确定最佳分解层数。对小波阈值去噪后的信号进行小波包分解,以分解后的第1、2频带能量占比以及熵值作为特征向量对气液两相流进行流型识别。389组压力信号的流型识别结果表明,提取特征向量结合随机子空间决策树模型可以对气液两相流流型进行高效识别分类,采用改进小波阈值法处理后的流型整体平均识别率达98.08%。 展开更多
关键词 海洋工程 气力提升 气液两相流 小波分析 熵权法 阈值去噪 流型识别
在线阅读 下载PDF
基于改进小波阈值与卡尔曼滤波的轮轨振动信号降噪方法
20
作者 许笑然 臧永立 梁志国 《中国铁路》 北大核心 2025年第11期93-100,共8页
目前列车运行控制主要依赖轨道电路进行占用检测,但在恶劣环境下轨道电路易发生故障。光纤传感技术因其高适应性与快速响应特性,应用于列车定位领域,但因原始信号噪声较强,需有效降噪。提出一种结合改进小波阈值与时频域特征的卡尔曼滤... 目前列车运行控制主要依赖轨道电路进行占用检测,但在恶劣环境下轨道电路易发生故障。光纤传感技术因其高适应性与快速响应特性,应用于列车定位领域,但因原始信号噪声较强,需有效降噪。提出一种结合改进小波阈值与时频域特征的卡尔曼滤波降噪方法,通过小波多尺度分析抑制噪声,并利用特征判别与卡尔曼滤波进一步去除环境干扰。试验结果表明,该方法能有效抑制环境与拖尾噪声,保留轮轨振动特征,能够提高列车长度、速度和位置的识别精度。 展开更多
关键词 列车定位 轮轨振动信号 分布式光纤传感 降噪方法 小波阈值 卡尔曼滤波 识别精度
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部