期刊文献+
共找到5,186篇文章
< 1 2 250 >
每页显示 20 50 100
Forecasting electricity prices in the spot market utilizing wavelet packet decomposition integrated with a hybrid deep neural network
1
作者 Heping Jia Yuchen Guo +5 位作者 Xiaobin Zhang Qianxin Ma Zhenglin Yang Yaxian Zheng Dan Zeng Dunnan Liu 《Global Energy Interconnection》 2025年第5期874-890,共17页
Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses signif... Accurate forecasting of electricity spot prices is crucial for market participants in formulating bidding strategies.However,the extreme volatility of electricity spot prices,influenced by various factors,poses significant challenges for forecasting.To address the data uncertainty of electricity prices and effectively mitigate gradient issues,overfitting,and computational challenges associated with using a single model during forecasting,this paper proposes a framework for forecasting spot market electricity prices by integrating wavelet packet decomposition(WPD)with a hybrid deep neural network.By ensuring accurate data decomposition,the WPD algorithm aids in detecting fluctuating patterns and isolating random noise.The hybrid model integrates temporal convolutional networks(TCN)and long short-term memory(LSTM)networks to enhance feature extraction and improve forecasting performance.Compared to other techniques,it significantly reduces average errors,decreasing mean absolute error(MAE)by 27.3%,root mean square error(RMSE)by 66.9%,and mean absolute percentage error(MAPE)by 22.8%.This framework effectively captures the intricate fluctuations present in the time series,resulting in more accurate and reliable predictions. 展开更多
关键词 Electricity price forecasting Long and short-term memory Hybrid deep neural network wavelet packet decomposition Temporal neural network
在线阅读 下载PDF
Application of wavelet neural network with chaos theory for enhanced forecasting of pressure drop signals in vapor−liquid−solid fluidized bed evaporator
2
作者 Xiaoping Xu Ting Zhang +2 位作者 Zhimin Mu Yongli Ma Mingyan Liu 《Chinese Journal of Chemical Engineering》 2025年第2期67-81,共15页
The dynamics of vapor−liquid−solid(V−L−S)flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior,hindering accurate prediction of pressure drop signals.To address this challenge,this... The dynamics of vapor−liquid−solid(V−L−S)flow boiling in fluidized bed evaporators exhibit inherent complexity and chaotic behavior,hindering accurate prediction of pressure drop signals.To address this challenge,this study proposes an innovative hybrid approach that integrates wavelet neural network(WNN)with chaos analysis.By leveraging the Cross-Correlation(C−C)method,the minimum embedding dimension for phase space reconstruction is systematically calculated and then adopted as the input node configuration for the WNN.Simulation results demonstrate the remarkable effectiveness of this integrated method in predicting pressure drop signals,advancing our understanding of the intricate dynamic phenomena occurring with V−L−S fluidized bed evaporators.Moreover,this study offers a novel perspective on applying advanced data-driven techniques to handle the complexities of multi-phase flow systems and highlights the potential for improved operational prediction and control in industrial settings. 展开更多
关键词 wavelet neural network forecasting Chaos theory Phase space reconstruction Pressure drop forecasting Fluidized bed evaporator Multi-phase dynamics
在线阅读 下载PDF
SOC estimation of lithium-ion power battery for HEV based on advanced wavelet neural network 被引量:4
3
作者 付主木 赵瑞 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期299-304,共6页
In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Bas... In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Based on advanced WNN,the SOC estimation model of a lithium-ion power battery for the HEV is first established.Then,the convergence of the advanced WNN algorithm is proved by mathematical deduction.Finally,using an adequate data sample of various charging and discharging of HEV batteries,the neural network is trained.The simulation results indicate that the proposed algorithm can effectively decrease the estimation errors of the lithium-ion power battery SOC from the range of ±8% to ±1.5%,compared with the traditional SOC estimation methods. 展开更多
关键词 wavelet neural network state of charge(SOC) hybrid electric vehicle lithium-ion power battery
在线阅读 下载PDF
Approximation to NLAR(p) with Wavelet Neural Networks
4
作者 朱石焕 吴曦 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第4期94-98,共5页
Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximati... Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximating to function. Based on it, approximating to NLAR(p) with wavelet neural networks is studied. 展开更多
关键词 wavelet neural networks orthonormal scaling functions NLAR(p)
在线阅读 下载PDF
A Wavelet and Neural Networks Based on Fault Diagnosis for HAGC System of Strip Rolling Mill 被引量:13
5
作者 LI Guo you DONG Min 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第1期31-35,共5页
The fault diagnosis of HAGC (Hydraulic Gauge Control) system of strip rolling mill is researched. Taking the advantage of the accompanying characteristics of the closed loop control system, rolling force forecasting... The fault diagnosis of HAGC (Hydraulic Gauge Control) system of strip rolling mill is researched. Taking the advantage of the accompanying characteristics of the closed loop control system, rolling force forecasting model is built based on neural networks. The comparison results of the prediction and the actual signal are taken as residual signals. Wavelet transform is used to obtain the components of high and low frequency of the residual signal. Wave let decomposition results make fault feature clear and time-domain positioning accurately. Fault numerical criterion is established through Lipschitz exponent. By analyzing the varied fault features which correspond to varied fault rea sons, the fault diagnosis of HAGC system is implemented successfully. 展开更多
关键词 HAGC fault diagnosis neural network wavelet transform
原文传递
A Wavelet Neural Network Based Non-linear Model Predictive Controller for a Multi-variable Coupled Tank System 被引量:4
6
作者 Kayode Owa Sanjay Sharma Robert Sutton 《International Journal of Automation and computing》 EI CSCD 2015年第2期156-170,共15页
In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applicati... In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applications. The involvement of multi-input multi-output(MIMO) system makes the design of an effective controller a challenging task. MIMO systems have inherent couplings,interactions in-between the process input-output variables and generally have an complex internal structure. The aim of this paper is to design, simulate, and implement a novel real time constrained NMPC for a multi-variable CTS with the aid of intelligent system techniques. There are two major formidable challenges hindering the success of the implementation of a NMPC strategy in the MIMO case. The first is the difficulty of obtaining a good non-linear model by training a non-convex complex network to avoid being trapped in a local minimum solution. The second is the online real time optimisation(RTO) of the manipulated variable at every sampling time.A novel wavelet neural network(WNN) with high predicting precision and time-frequency localisation characteristic was selected for an MIMO model and a fast stochastic wavelet gradient algorithm was used for initial training of the network. Furthermore, a genetic algorithm was used to obtain the optimised parameters of the WNN as well as the RTO during the NMPC strategy. The proposed strategy performed well in both simulation and real time on an MIMO CTS. The results indicated that WNN provided better trajectory regulation with less mean-squared-error and average control energy compared to an artificial neural network. It is also shown that the WNN is more robust during abnormal operating conditions. 展开更多
关键词 wavelet neural network(wnn) non-linear model predictive control(NMPC) real time practical implementation multi-input multi-outpu
原文传递
Wavelet Neural Network Based on NARMA-L2 Model for Prediction of Thermal Characteristics in a Feed System 被引量:9
7
作者 JIN Chao WU Bo HU Youmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期33-41,共9页
Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the ... Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the temperature of critical machine elements irrespective of the operating conditions. But recent researches show that different sets of operating parameters generated significantly different error values even though the temperature of the machine elements generated was similar. As such, it is important to develop a generic thermal error model which is capable of evaluating the positioning error induced by different operating parameters. This paper ultimately aims at the development of a comprehensive prediction model that can predict the thermal characteristics under different operating conditions (feeding speed, load and preload of ballscrew) in a feed system. A novel wavelet neural network based on feedback linearization autoregressive moving averaging (NARMA-L2) model is introduced to predict the temperature rise of sensitive points and thermal positioning errors considering the different operating conditions as the model inputs. Particle swarm optimization(PSO) algorithm is brought in as the training method. According to ISO230-2 Positioning Accuracy Measurement and ISO230-3 Thermal Effect Evaluation standards, experiments under different operating conditions were carried out on a self-made quasi high-speed feed system experimental bench HUST-FS-001 by using Pt100 as temperature sensor, and the positioning errors were measured by Heidenhain linear grating scale. The experiment results show that the recommended method can be used to predict temperature rise of sensitive points and thermal positioning errors with good accuracy. The work described in this paper lays a solid foundation of thermal error prediction and compensation in a feed system based on varying operating conditions and machine tool characteristics. 展开更多
关键词 wavelet neural network NARMA-L2 model particle swarm optimization thermal positioning error feed system
在线阅读 下载PDF
Research on runoff variations based on wavelet analysis and wavelet neural network model: A case study of the Heihe River drainage basin (1944-2005) 被引量:6
8
作者 WANG Jun MENG Jijun 《Journal of Geographical Sciences》 SCIE CSCD 2007年第3期327-338,共12页
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin... The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin. 展开更多
关键词 annual runoff variations wavelet analysis wavelet neural network model GIS spatial analysis HeiheRiver drainage basin
在线阅读 下载PDF
Wavelet neural network based fault diagnosis in nonlinear analog circuits 被引量:16
9
作者 Yin Shirong Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期521-526,共6页
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ... The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility. 展开更多
关键词 fault diagnosis nonlinear analog circuits wavelet analysis neural networks.
在线阅读 下载PDF
Time series prediction using wavelet process neural network 被引量:4
10
作者 丁刚 钟诗胜 李洋 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第6期1998-2003,共6页
In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series predi... In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series prediction model based on the wavelet process neural network, and develops the corresponding learning algorithm based on the expansion of the orthogonal basis functions. The effectiveness of the proposed time series prediction model and its learning algorithm is proved by the Macke-Glass time series prediction, and the comparative prediction results indicate that the proposed time series prediction model based on the wavelet process neural network seems to perform well and appears suitable for using as a good tool to predict the highly complex nonlinear time series. 展开更多
关键词 time series PREDICTION wavelet process neural network learning algorithm
原文传递
Digital Watermarking Algorithm Based on Wavelet Transform and Neural Network 被引量:4
11
作者 WANG Zhenfei ZHAI Guangqun WANG Nengchao 《Wuhan University Journal of Natural Sciences》 CAS 2006年第6期1667-1670,共4页
An effective blind digital watermarking algorithm based on neural networks in the wavelet domain is presented. Firstly, the host image is decomposed through wavelet transform. The significant coefficients of wavelet a... An effective blind digital watermarking algorithm based on neural networks in the wavelet domain is presented. Firstly, the host image is decomposed through wavelet transform. The significant coefficients of wavelet are selected according to the human visual system (HVS) characteristics. Watermark bits are added to them. And then effectively cooperates neural networks to learn the characteristics of the embedded watermark related to them. Because of the learning and adaptive capabilities of neural networks, the trained neural networks almost exactly recover the watermark from the watermarked image. Experimental results and comparisons with other techniques prove the effectiveness of the new algorithm. 展开更多
关键词 digital watermarking neural networks wavelet transform human visual system
在线阅读 下载PDF
Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm 被引量:8
12
作者 ZHANG Ye YANG Shiping +2 位作者 GUO Zhenhai GUO Yanling ZHAO Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期107-115,共9页
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In... Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models. 展开更多
关键词 Wind speed forecast wavelet decomposition neural network Cuckoo search algorithm
在线阅读 下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:7
13
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
在线阅读 下载PDF
Self-correcting wavelet neural network control of continuous rotary electro-hydraulic servo motor 被引量:2
14
作者 Wang Xiaojing Li Chunhui Peng Yiwen 《High Technology Letters》 EI CAS 2021年第1期26-37,共12页
In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the... In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system. 展开更多
关键词 continuous rotary electro-hydraulic servo motor Pol-Ind friction model self correcting wavelet neural network(wnn) Adam optimization algorithm
在线阅读 下载PDF
Wavelet neural network aerodynamic modeling from flight data based on pso algorithm with information sharing and velocity disturbance 被引量:4
15
作者 甘旭升 端木京顺 +1 位作者 孟月波 丛伟 《Journal of Central South University》 SCIE EI CAS 2013年第6期1592-1601,共10页
For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with i... For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data. 展开更多
关键词 aerodynamic modeling flight data wavelet neural network particle swarm optimization
在线阅读 下载PDF
A Compensation Controller Based on a Nonlinear Wavelet Neural Network for Continuous Material Processing Operations 被引量:1
16
作者 Chen Shen Youping Chen +1 位作者 Bing Chen Jingming Xie 《Computers, Materials & Continua》 SCIE EI 2019年第7期379-397,共19页
Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the p... Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers. 展开更多
关键词 Continuous material processing wavelet neural network(wnn) nonlinear generalized predictive control(NGPC) auto-leveling system
在线阅读 下载PDF
No-reference image quality assessment based on AdaBoost_BP neural network in wavelet domain 被引量:2
17
作者 YAN Junhua BAI Xuehan +4 位作者 ZHANG Wanyi XIAO Yongqi CHATWIN Chris YOUNG Rupert BIRCH Phil 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期223-237,共15页
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based o... Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method. 展开更多
关键词 image quality assessment (IQA) AdaBoost_BP neural network (ABNN) wavelet transform natural SCENE STATISTICS (NSS) local information ENTROPY
在线阅读 下载PDF
Forecasting Baltic Dirty Tanker Index by Applying Wavelet Neural Networks 被引量:4
18
作者 Shuangrui Fan Tingyun Ji +1 位作者 Wilmsmeier Gordon Bergqvist Rickard 《Journal of Transportation Technologies》 2013年第1期68-87,共20页
Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. Howev... Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. However, limitations exist in traditional stochastic and econometric explanation modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics of traditional and artificial intelligent forecasting techniques are discussed and rationales for choosing WNN are explained. Secondly, the components and features of BDTI will be explicated. After that, the authors delve the determinants and influencing factors behind fluctuations of the BDTI in order to set inputs for WNN forecasting model. The paper examines non-linearity and non-stationary features of the BDTI and elaborates WNN model building procedures. Finally, the comparison of forecasting performance between WNN and ARIMA time series models show that WNN has better forecasting accuracy than traditionally used modeling techniques. 展开更多
关键词 BDTI TANKER FREIGHT Rates Forecasting waveletS neural networks SHIPPING FINANCE
暂未订购
Dynamic prediction of gas emission based on wavelet neural network toolbox 被引量:4
19
作者 Yu-Min PAN Yong-Hong DENG Quan-Zhu ZHANG Peng-Qian XUE 《Journal of Coal Science & Engineering(China)》 2013年第2期174-181,共8页
This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time... This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN. 展开更多
关键词 dynamic prediction gas emission wavelet neural network TOOLBOX prediction model
在线阅读 下载PDF
Short‐time wind speed prediction based on Legendre multi‐wavelet neural network 被引量:2
20
作者 Xiaoyang Zheng Dongqing Jia +3 位作者 Zhihan Lv Chengyou Luo Junli Zhao Zeyu Ye 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期946-962,共17页
As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.Howeve... As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.However,due to the stochastic and un-certain nature of wind energy,more accurate forecasting is necessary for its more stable and safer utilisation.This paper proposes a Legendre multiwavelet‐based neural network model for non‐linear wind speed prediction.It combines the excellent properties of Legendre multi‐wavelets with the self‐learning capability of neural networks,which has rigorous mathematical theory support.It learns input‐output data pairs and shares weights within divided subintervals,which can greatly reduce computing costs.We explore the effectiveness of Legendre multi‐wavelets as an activation function.Mean-while,it is successfully being applied to wind speed prediction.In addition,the appli-cation of Legendre multi‐wavelet neural networks in a hybrid model in decomposition‐reconstruction mode to wind speed prediction problems is also discussed.Numerical results on real data sets show that the proposed model is able to achieve optimal per-formance and high prediction accuracy.In particular,the model shows a more stable performance in multi‐step prediction,illustrating its superiority. 展开更多
关键词 artificial neural network neural network time series wavelet transforms wind speed prediction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部