Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-ban...Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.展开更多
Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ...Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.展开更多
Wavelet transformation is a widely used method in high-frequency sequence stratigraphic analysis.However, the application is problematic since different wavelets always return the same sequence analysis results. To ad...Wavelet transformation is a widely used method in high-frequency sequence stratigraphic analysis.However, the application is problematic since different wavelets always return the same sequence analysis results. To address this issue, we applied five commonly used wavelets to theoretical sequence models to document some application criteria. Five gradual scale-change sequence models were simplified from the glutenite succession deposition by gravity flows to form the fining-upwards cycle sequences(FUCS) and coarsening-upwards cycle sequences(CUCS). After conducting theoretical sequence model tests, the optimal wavelet(sym4) was selected and successfully used with actual data to identify the sequence boundaries. We also proposed a new method to optimize the scale of continuous wavelet transformation(CWT) for sequence boundary determination. We found that the balloon-like marks in scalograms of db4, sym4, and coif4 wavelet determine, respectively, the fourth-order sequence boundary, the thick succession sequence boundaries in FUCS, and the thick succession sequence in FUCS and CUCS. Comparing the sequence identification results shows that the asymmetric wavelets had an advantage in high-frequency sequence boundary determination and sedimentary cycle discrimination through the amplitude trend of the coefficient, in which the sym4 wavelet is the most effective. In conclusion, the asymmetry of wavelets is the first selection principle, of which asymmetric wavelets are more sensitive to sediment deposition by flood flows. The match of the wavelet between the sequence is the second selection principle, in which the correlation of time-frequency impacts the accuracy of sequence surface localization. However, the waveform of the wavelet is a visual and abstract parameter for sequence boundary detection. The appropriate wavelet for lacustrine sequence analysis is the asymmetric wavelet with a weak number of side lobes. The depositional flows, depositional process,and autogenic are three sedimentary factors that influence the sequence analysis results.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
The Rössler attractor model is an important model that provides valuable insights into the behavior of chaotic systems in real life and is applicable in understanding weather patterns,biological systems,and secur...The Rössler attractor model is an important model that provides valuable insights into the behavior of chaotic systems in real life and is applicable in understanding weather patterns,biological systems,and secure communications.So,this work aims to present the numerical performances of the nonlinear fractional Rössler attractor system under Caputo derivatives by designing the numerical framework based on Ultraspherical wavelets.The Caputo fractional Rössler attractor model is simulated into two categories,(i)Asymmetric and(ii)Symmetric.The Ultraspherical wavelets basis with suitable collocation grids is implemented for comprehensive error analysis in the solutions of the Caputo fractional Rössler attractor model,depicting each computation in graphs and tables to analyze how fractional order affects the model’s dynamics.Approximate solutions obtained through the proposed scheme for integer order are well comparable with the fourth-order Runge-Kutta method.Also,the stability analyses of the considered model are discussed for different equilibrium points.Various fractional orders are considered while performing numerical simulations for the Caputo fractional Rössler attractor model by using Mathematica.The suggested approach can solve another non-linear fractional model due to its straightforward implementation.展开更多
To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achiev...To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achieves high-quality AFM imaging via line-by-line corrections for each distorted profile along the fast axis.The key to this line-by-line correction is to accurately simulate the profile distortion of each scanning row.Therefore,a data preprocessing approach is first developed to roughly filter out most of the height data that impairs the accuracy of distortion modeling.This process is implemented through an internal double-screening mechanism.A line-fitting method is adopted to preliminarily screen out the obvious specimens.Lifting wavelet analysis is then carried out to identify the base parts that are mistakenly filtered out as specimens so as to preserve most of the base profiles and provide a good basis for further distortion modeling.Next,an iterative thresholding algorithm is developed to precisely simulate the profile distortion.By utilizing the roughly screened base profile,the optimal threshold,which is used to screen out the pure bases suitable for distortion modeling,is determined through iteration with a specified error rule.On this basis,the profile distortion is accurately modeled through line fitting on the finely screened base data,and the correction is implemented by subtracting the modeling result from the distorted profile.Finally,the effectiveness of the proposed method is verified through experiments and applications.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieram...In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieramhical cluster analysis (HCA). The results showed that the infrared spectra were similar on the whole, but there were differences in peak position, peak shape and peak absorption intensity in the range of 1 800-700 cm-1. The infrared spectra in the range of 1 800-700 cm-1 were selected to perform continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The 15th-Ievel decomposition coefficients of CWT and the 5=-level detail coefficients of DWT were classified by PCA and HCA. The cumulative contri- bution rates of the first three principal components of CWT and DWT were 93.12% and 89.78%, respectively. The accurate recognition rates of PCA and HCA were all 100%. It is proved that FTIR combined with WT can be used to distinguish different kinds of rhizome crops.展开更多
Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a sev...Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.展开更多
Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting...Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.展开更多
A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- estab...A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- established long-term daily temperature series back to the 18th century, which have been "homogenized" with conventional approaches. Various types of problems remaining in the series were revealed with the wavelet method. Their influences on analyses of change in climate extremes are discussed. The results have importance for understanding issues in conventional climate data processing and for development of improved methods of homogenization in order to improve analysis of climate extremes based on daily data.展开更多
Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analy...Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.展开更多
During the monitoring engineering of landslides, the monitoring data of accumulated displacement are usually affected by the external factors. Therefore, the displacement curve always has step-like character, which br...During the monitoring engineering of landslides, the monitoring data of accumulated displacement are usually affected by the external factors. Therefore, the displacement curve always has step-like character, which brings some difficulties to the accurate prediction of landslides. In order to solve this problem, based on the wavelet analysis and cusp catastrophe, a new kind of analysis method is proposed in this article. First, Fourier transform method can be used to extract the frequency component of the curve of monitoring displacement. Second, the wavelet transform was adopted to inspect the breakpoints of signals, which can be used to analyze the cause of the occurrence of the step-like character in the curve of landslide monitoring. Based on the cusp catastrophe theory, a nonlinear dynamic model was established to conduct the simulation calculation of time forecasting of landslides. According to a case study of landslide, the periodical rainfall and reservoir level fluctuation are the main factors leading to the step-like changes in the curve of monitoring displacement. In addition, the results of simulation calculation are in agreement with the fact of local failure of landslides. This method can provide a new analysis way for the time prediction of landslides.展开更多
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib...During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.展开更多
Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to pr...Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to provide a powerful tool for information analysis and processing. Based on the analysis of the geometric nature of hydrocarbon anomalies and background, Mallat wavelet and symmetric border treatment are selected and data pre-processing (logarithm-normalization) is established. This approach provide good results in Shandong and Inner Mongolia, China. It is demonstrated that this approach overcome the disadvantage of backgound variation in the window (interference in window), used in moving average, frame filtering and spatial and scaling modeling methods.展开更多
By decomposing and reconstructing the runoff information from 1965 to 2007 of the hydrologic stations of Tuotuo River and Zhimenda in the source region of the Yangtze River, and Jimai and Tangnaihai in the source regi...By decomposing and reconstructing the runoff information from 1965 to 2007 of the hydrologic stations of Tuotuo River and Zhimenda in the source region of the Yangtze River, and Jimai and Tangnaihai in the source region of the Yellow River with db3 wavelet, runoff of different hydrologic stations tends to be declining in the seasons of spring flood, summer flood and dry ones except for that in Tuotuo River. The declining flood/dry seasons series was summer 〉 spring 〉 dry; while runoff of Tuotuo River was always increasing in different stages from 1965 to 2007 with a higher increase rate in summer flood seasons than that in spring ones. Complex Morlet wavelet was selected to detect runoff periodicity of the four hydrologic stations mentioned above. Over all seasons the periodicity was 11-12 years in the source region of the Yellow River. For the source region of the Yangtze River the periodicity was 4-6 years in the spring flood seasons and 13-14 years in the summer flood seasons. The differences of variations of flow periodicity between the upper catchment areas of the Yellow River and the Yangtze River and between seasons were considered in relation to glacial melt and annual snowfall and rainfall as providers of water for runoff.展开更多
It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent...It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.展开更多
基金supported by the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(Grant No.2023C02018)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002)+2 种基金National Natural Science Foundation of China(Grant No.42371385)Funds of the Natural Science Foundation of Hangzhou(Grant No.2024SZRYBD010001)Nanxun Scholars Program of ZJWEU(Grant No.RC2022010755).
文摘Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.
基金supported by the Technology Innovation Program(20023566,‘Development and Demonstration of Industrial IoT and AI-Based Process Facility Intelligence Support System in Small and Medium Manufacturing Sites’)funded by the Ministry of Trade,Industry,&Energy(MOTIE,Republic of Korea).
文摘Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.
文摘Wavelet transformation is a widely used method in high-frequency sequence stratigraphic analysis.However, the application is problematic since different wavelets always return the same sequence analysis results. To address this issue, we applied five commonly used wavelets to theoretical sequence models to document some application criteria. Five gradual scale-change sequence models were simplified from the glutenite succession deposition by gravity flows to form the fining-upwards cycle sequences(FUCS) and coarsening-upwards cycle sequences(CUCS). After conducting theoretical sequence model tests, the optimal wavelet(sym4) was selected and successfully used with actual data to identify the sequence boundaries. We also proposed a new method to optimize the scale of continuous wavelet transformation(CWT) for sequence boundary determination. We found that the balloon-like marks in scalograms of db4, sym4, and coif4 wavelet determine, respectively, the fourth-order sequence boundary, the thick succession sequence boundaries in FUCS, and the thick succession sequence in FUCS and CUCS. Comparing the sequence identification results shows that the asymmetric wavelets had an advantage in high-frequency sequence boundary determination and sedimentary cycle discrimination through the amplitude trend of the coefficient, in which the sym4 wavelet is the most effective. In conclusion, the asymmetry of wavelets is the first selection principle, of which asymmetric wavelets are more sensitive to sediment deposition by flood flows. The match of the wavelet between the sequence is the second selection principle, in which the correlation of time-frequency impacts the accuracy of sequence surface localization. However, the waveform of the wavelet is a visual and abstract parameter for sequence boundary detection. The appropriate wavelet for lacustrine sequence analysis is the asymmetric wavelet with a weak number of side lobes. The depositional flows, depositional process,and autogenic are three sedimentary factors that influence the sequence analysis results.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金"La derivada fraccional generalizada,nuevos resultados y aplicaciones a desigualdades integrales"Cod UIO-077-2024supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2025/R/1446).
文摘The Rössler attractor model is an important model that provides valuable insights into the behavior of chaotic systems in real life and is applicable in understanding weather patterns,biological systems,and secure communications.So,this work aims to present the numerical performances of the nonlinear fractional Rössler attractor system under Caputo derivatives by designing the numerical framework based on Ultraspherical wavelets.The Caputo fractional Rössler attractor model is simulated into two categories,(i)Asymmetric and(ii)Symmetric.The Ultraspherical wavelets basis with suitable collocation grids is implemented for comprehensive error analysis in the solutions of the Caputo fractional Rössler attractor model,depicting each computation in graphs and tables to analyze how fractional order affects the model’s dynamics.Approximate solutions obtained through the proposed scheme for integer order are well comparable with the fourth-order Runge-Kutta method.Also,the stability analyses of the considered model are discussed for different equilibrium points.Various fractional orders are considered while performing numerical simulations for the Caputo fractional Rössler attractor model by using Mathematica.The suggested approach can solve another non-linear fractional model due to its straightforward implementation.
基金supported by the National Natural Science Foundation of China under Grant No.21933006.
文摘To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achieves high-quality AFM imaging via line-by-line corrections for each distorted profile along the fast axis.The key to this line-by-line correction is to accurately simulate the profile distortion of each scanning row.Therefore,a data preprocessing approach is first developed to roughly filter out most of the height data that impairs the accuracy of distortion modeling.This process is implemented through an internal double-screening mechanism.A line-fitting method is adopted to preliminarily screen out the obvious specimens.Lifting wavelet analysis is then carried out to identify the base parts that are mistakenly filtered out as specimens so as to preserve most of the base profiles and provide a good basis for further distortion modeling.Next,an iterative thresholding algorithm is developed to precisely simulate the profile distortion.By utilizing the roughly screened base profile,the optimal threshold,which is used to screen out the pure bases suitable for distortion modeling,is determined through iteration with a specified error rule.On this basis,the profile distortion is accurately modeled through line fitting on the finely screened base data,and the correction is implemented by subtracting the modeling result from the distorted profile.Finally,the effectiveness of the proposed method is verified through experiments and applications.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team in Science and Technology in University of Yunnan Province~~
文摘In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieramhical cluster analysis (HCA). The results showed that the infrared spectra were similar on the whole, but there were differences in peak position, peak shape and peak absorption intensity in the range of 1 800-700 cm-1. The infrared spectra in the range of 1 800-700 cm-1 were selected to perform continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The 15th-Ievel decomposition coefficients of CWT and the 5=-level detail coefficients of DWT were classified by PCA and HCA. The cumulative contri- bution rates of the first three principal components of CWT and DWT were 93.12% and 89.78%, respectively. The accurate recognition rates of PCA and HCA were all 100%. It is proved that FTIR combined with WT can be used to distinguish different kinds of rhizome crops.
基金Chinese Science Technology and Industry Foundation for National Defense(FEBG27100001)
文摘Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.
基金funded by National Natural Science Foundation of China (Grant No. 41375038)China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201306040,GYHY201306075)
文摘Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.
文摘A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- established long-term daily temperature series back to the 18th century, which have been "homogenized" with conventional approaches. Various types of problems remaining in the series were revealed with the wavelet method. Their influences on analyses of change in climate extremes are discussed. The results have importance for understanding issues in conventional climate data processing and for development of improved methods of homogenization in order to improve analysis of climate extremes based on daily data.
基金the financial support of the National Key Basic Research Foundation of China (Project G19990650), the National Natural Science Foundation of China (Project 50071054) and the financial support of State Key
文摘Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.
基金supported by the National Natural Science Foundation of China (Nos. 40202028, 50609026)Postdoctors Foundation of China (No. 20060400256)Excellent Young Teacher Science and Technology Program of Faculty of Engi-neering, China University of Geosciences
文摘During the monitoring engineering of landslides, the monitoring data of accumulated displacement are usually affected by the external factors. Therefore, the displacement curve always has step-like character, which brings some difficulties to the accurate prediction of landslides. In order to solve this problem, based on the wavelet analysis and cusp catastrophe, a new kind of analysis method is proposed in this article. First, Fourier transform method can be used to extract the frequency component of the curve of monitoring displacement. Second, the wavelet transform was adopted to inspect the breakpoints of signals, which can be used to analyze the cause of the occurrence of the step-like character in the curve of landslide monitoring. Based on the cusp catastrophe theory, a nonlinear dynamic model was established to conduct the simulation calculation of time forecasting of landslides. According to a case study of landslide, the periodical rainfall and reservoir level fluctuation are the main factors leading to the step-like changes in the curve of monitoring displacement. In addition, the results of simulation calculation are in agreement with the fact of local failure of landslides. This method can provide a new analysis way for the time prediction of landslides.
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
基金National Hi-Tech Research and Development Program of China (863 Program) (No. 2006AA04Z416)the National Natural Science Foundation of China Under Grant No. 50538020
文摘During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.
文摘Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to provide a powerful tool for information analysis and processing. Based on the analysis of the geometric nature of hydrocarbon anomalies and background, Mallat wavelet and symmetric border treatment are selected and data pre-processing (logarithm-normalization) is established. This approach provide good results in Shandong and Inner Mongolia, China. It is demonstrated that this approach overcome the disadvantage of backgound variation in the window (interference in window), used in moving average, frame filtering and spatial and scaling modeling methods.
基金National Key Project of Scientific and Technical Supporting Programs,No.2009BAC61B01
文摘By decomposing and reconstructing the runoff information from 1965 to 2007 of the hydrologic stations of Tuotuo River and Zhimenda in the source region of the Yangtze River, and Jimai and Tangnaihai in the source region of the Yellow River with db3 wavelet, runoff of different hydrologic stations tends to be declining in the seasons of spring flood, summer flood and dry ones except for that in Tuotuo River. The declining flood/dry seasons series was summer 〉 spring 〉 dry; while runoff of Tuotuo River was always increasing in different stages from 1965 to 2007 with a higher increase rate in summer flood seasons than that in spring ones. Complex Morlet wavelet was selected to detect runoff periodicity of the four hydrologic stations mentioned above. Over all seasons the periodicity was 11-12 years in the source region of the Yellow River. For the source region of the Yangtze River the periodicity was 4-6 years in the spring flood seasons and 13-14 years in the summer flood seasons. The differences of variations of flow periodicity between the upper catchment areas of the Yellow River and the Yangtze River and between seasons were considered in relation to glacial melt and annual snowfall and rainfall as providers of water for runoff.
基金This project is supported by National Natural Science Foundation of China (No.50275154) Municipal Natural Science Foundation of Chongqing, China (No.8773).
文摘It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.