期刊文献+
共找到4,372篇文章
< 1 2 219 >
每页显示 20 50 100
Discrete Wavelet Multi-scale Decomposition of the Temporal Gravity Variations in North China
1
作者 Liu Fang Zhu Yiqing Chen Shi 《Earthquake Research in China》 2014年第3期360-369,共10页
On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at di... On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at different depths,and give some explanation to gravity variation at different time space scales. Gravity variation trends in North China are improved. Based on this result and the analysis of wavelet power spectrum,the images of the depth of wavelet approximation and detail are obtained. The results obtained are of scientific significance for the deep understanding of potential seismic risk in North China from gravity variations in different time space scales. 展开更多
关键词 wavelet decomposition multi-scale Gravity variation field POWERSPECTRUM North China
在线阅读 下载PDF
Active Depths of Main Faults in the Ying-Qiong Basin Investigated by Multi-Scale Wavelet Decomposition of Bouguer Gravity Anomalies and Power Spectral Methods 被引量:3
2
作者 AN Long YU Chong +4 位作者 GONG Wei LI Deyong XING Junhui XU Chong ZHANG Hao 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第5期1174-1188,共15页
The Ying-Qiong Basin is located on the northwestern margin of the South China Sea and at the junction of the South China Block and the Indochina Block.It is characterized by complex geological structures.The existing ... The Ying-Qiong Basin is located on the northwestern margin of the South China Sea and at the junction of the South China Block and the Indochina Block.It is characterized by complex geological structures.The existing seismic data in the study area is sparse due to the lack of earthquake activities.Because of the limited source energy and poor coverage of seismic data,the knowledge of deep structures in the area,including the spatial distribution of deep faults,is incomplete.Contrarily,satellite gravity data cover the entire study area and can reveal the spatial distribution of faults.Based on the wavelet multi-scale decomposition method,the Bouguer gravity field in the Ying-Qiong Basin was decomposed and reconstructed to obtain the detailed images of the first-to sixth-order gravitational fields.By incorporating the known geological features,the gravitational field responses of the main faults in the Ying-Qiong Basin were identified in the detailed fields,and the power spectrum analysis yielded the depths of 1.4,8,15,26.5,and 39 km for the average burial depths of the bottom surfaces from the first-to fifth-order detailed fields,respectively.The four main faults in the Yinggehai Basin all have a large active depth range:fault A(No.1)is between 5 and 39 km,fault B is between 26.5 and 39 km,and faults C and D are between 15 and 39 km.However,the depth of active faults in the Qiongdongnan Basin is relatively shallow,mainly between 8 and 26.5 km. 展开更多
关键词 Yinggehai Basin Qiongdongnan Basin active depth of fault Bouguer gravity anomaly wavelet multi-scale analysis power spectrum
在线阅读 下载PDF
A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants
3
作者 Shaoxiong Wu Ruoxin Li +6 位作者 Xiaofeng Tao Hailong Wu Ping Miao Yang Lu Yanyan Lu Qi Liu Li Pan 《Computers, Materials & Continua》 SCIE EI 2024年第11期3063-3077,共15页
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati... Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods. 展开更多
关键词 Times series forecasting long short term memory network(LSTM) time convolutional network(TCN) wavelet decomposition
在线阅读 下载PDF
Enhanced Fourier Transform Using Wavelet Packet Decomposition
4
作者 Wouladje Cabrel Golden Tendekai Mumanikidzwa +1 位作者 Jianguo Shen Yutong Yan 《Journal of Sensor Technology》 2024年第1期1-15,共15页
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti... Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method. 展开更多
关键词 Fourier Transform wavelet Packet decomposition Time-Frequency Analysis Non-Stationary Signals
在线阅读 下载PDF
Variational Mode Decomposition-Informed Empirical Wavelet Transform for Electric Vibrator Noise Analysis
5
作者 Zhenyu Xu Zhangwei Chen 《Journal of Applied Mathematics and Physics》 2024年第6期2320-2332,共13页
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition... Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method. 展开更多
关键词 Electric Vibrator Noise Analysis Signal Decomposing Variational Mode decomposition Empirical wavelet Transform
在线阅读 下载PDF
Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition 被引量:16
6
作者 WU Chunyan LIU Jian +2 位作者 PENG Fuqiang YU Dejie LI Rong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期831-838,共8页
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o... When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion. 展开更多
关键词 zero phase time-varying filter multi-scale CHIRPLET sparse signal decomposition speed-changing gearbox fault diagnosis
在线阅读 下载PDF
Multi-scale spatial relationships between soil total nitrogen and influencing factors in a basin landscape based on multivariate empirical mode decomposition 被引量:1
7
作者 ZHU Hongfen CAO Yi +3 位作者 JING Yaodong LIU Geng BI Rutian YANG Wude 《Journal of Arid Land》 SCIE CSCD 2019年第3期385-399,共15页
The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factor... The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factors(elevation,slope and topographic wetness index),intrinsic soil factors(soil bulk density,sand content,silt content,and clay content)and combined environmental factors(including the first two principal components(PC1 and PC2)of the Vis-NIR soil spectra)along three sampling transects located at the upstream,midstream and downstream of Taiyuan Basin on the Chinese Loess Plateau.We separated the multivariate data series of STN and influencing factors at each transect into six intrinsic mode functions(IMFs)and one residue by multivariate empirical mode decomposition(MEMD).Meanwhile,we obtained the predicted equations of STN based on MEMD by stepwise multiple linear regression(SMLR).The results indicated that the dominant scales of explained variance in STN were at scale 995 m for transect 1,at scales 956 and 8852 m for transect 2,and at scales 972,5716 and 12,317 m for transect 3.Multi-scale correlation coefficients between STN and influencing factors were less significant in transect 3 than in transects 1 and 2.The goodness of fit root mean square error(RMSE),normalized root mean square error(NRMSE),and coefficient of determination(R2)indicated that the prediction of STN at the sampling scale by summing all of the predicted IMFs and residue was more accurate than that by SMLR directly.Therefore,the multi-scale method of MEMD has a good potential in characterizing the multi-scale spatial relationships between STN and influencing factors at the basin landscape scale. 展开更多
关键词 intrinsic MODE function MULTIVARIATE empirical MODE decomposition multi-scale spatial relationship sampling TRANSECT soil total nitrogen Chinese LOESS PLATEAU
在线阅读 下载PDF
MULTI-SCALE DECOMPOSITION OF BOUGUER GRAVITY ANOMALY AND SEISMIC ACTIVITY IN NORTH CHINA
8
作者 Fang Shengming, Zhang Xiankang, Jia Shixu, Duan Yonghong, Yang Zhuoxin and Qiu Shuyan (Geophysical of Exploration Center, CEA, Zhengzhou 450002, China) 《大地测量与地球动力学》 CSCD 2003年第B12期34-40,共7页
Bouguer gravity anomaly in North China is decomposed with multi scale decomposition technique of wavelet transform. Gravity anomalies produced by anomalous density bodies of various scales are revealed from surface to... Bouguer gravity anomaly in North China is decomposed with multi scale decomposition technique of wavelet transform. Gravity anomalies produced by anomalous density bodies of various scales are revealed from surface to Moho. Characteristics of anomalies of different orders and corresponding structural features are discussed. The result shows that details of wavelet transform of different orders reflect the distribution features of rock density at different depths and in various scales. In most cases, the two sides of a fault especially a deep and large fault in North China differ greatly in rock density. This difference records the history of the formation and evolution of the crust. Deep structural setting for the \%M\%s≥7.0 strong earthquakes in this region is also discussed. 展开更多
关键词 弱波的多级化解 区域地壳的特性 重力异常 岩石密度 中国北方 地震活动
在线阅读 下载PDF
Identification of Grinding Wheel Wear Signature by a Wavelet Packet Decomposition Method 被引量:6
9
作者 许黎明 许开州 柴运东 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第3期323-328,共6页
Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutt... Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutting tools.Research efforts were made to develop the wheel wear monitoring system due to its significance in grinding process.This paper presents a novel method for identification of grinding wheel wear signature by combination of wavelet packet decomposition(WPD) based energies.The distinctive feature of the method is that it takes advantage of the combinational information of the decomposed frequency components based on the WPD so the extracted features can be customized according to the specific monitored object to get better diagnosis effects.Experiments are researched on monitoring of grinding wheel wear states under different machining conditions.The results show that the energy ratio extracted from the measured vibration signals is consistent with the grinding wheel wear condition evaluated by experiment and the further extracted feature ratio can be used in prediction of wheel wear condition. 展开更多
关键词 grinding wheel wear VIBRATION feature extraction wavelet packet decomposition(WPD)
原文传递
Morphological Undecimated Wavelet Decomposition Fusion Algorithm and Its Application on Fault Feature Extraction of Hydraulic Pump 被引量:3
10
作者 孙健 李洪儒 +1 位作者 王卫国 叶鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第3期268-278,共11页
Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Fir... Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Firstly,under the framework of morphological undecimated wavelet decomposition(MUWD),multi-channel signals are decomposed.Approximate signals of all decomposition layers are selected by feature energy factor and fused according to the presented fusion rules.Furthermore,specific method for optimal selection of MUWDF parameters is presented to avoid subjective influences.Finally,the proposed algorithm is verified by simulation signals and pump vibration signals. 展开更多
关键词 MORPHOLOGICAL undecimated wavelet decomposition(MU
在线阅读 下载PDF
Feature Extraction of Bearing Vibration Signals Using Second Generation Wavelet and Spline-Based Local Mean Decomposition 被引量:5
11
作者 文成玉 董良 金欣 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期56-60,共5页
In order to extract the fault feature frequency of weak bearing signals,we put forward a local mean decomposition(LMD)method combining with the second generation wavelet transform.After performing the second generatio... In order to extract the fault feature frequency of weak bearing signals,we put forward a local mean decomposition(LMD)method combining with the second generation wavelet transform.After performing the second generation wavelet denoising,the spline-based LMD is used to decompose the high-frequency detail signals of the second generation wavelet signals into a number of production functions(PFs).Power spectrum analysis is applied to the PFs to detect bearing fault information and identify the fault patterns.Application in inner and outer race fault diagnosis of rolling bearing shows that the method can extract the vibration features of rolling bearing fault.This method is suitable for extracting the fault characteristics of the weak fault signals in strong noise. 展开更多
关键词 second generation wavelet transform local mean decomposition(LMD) feature extraction fault diagnosis
原文传递
Time Domain Signal Analysis Using Wavelet Packet Decomposition Approach 被引量:7
12
作者 M. Y. Gokhale Daljeet Kaur Khanduja 《International Journal of Communications, Network and System Sciences》 2010年第3期321-329,共9页
This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated... This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated. Since wavelet packet decomposition can provide more precise frequency resolution than wavelet decomposition the implementation of one dimensional wavelet packet transform and their usefulness in time signal analysis and synthesis is illustrated. A mother or basis wavelet is first chosen for five wavelet filter families such as Haar, Daubechies (Db4), Coiflet, Symlet and dmey. The signal is then decomposed to a set of scaled and translated versions of the mother wavelet also known as time and frequency parameters. Analysis and synthesis of the time signal is performed around 8 seconds to 25 seconds. This was conducted to determine the effect of the choice of mother wavelet on the time signals. Results are also prepared for the comparison of the signal at each decomposition level. The physical changes that are occurred during each decomposition level can be observed from the results. The results show that wavelet filter with WPA are useful for analysis and synthesis purpose. In terms of signal quality and the time required for the analysis and synthesis, the Haar wavelet has been seen to be the best mother wavelet. This is taken from the analysis of the signal to noise ratio (SNR) value which is around 300 dB to 315 dB for the four decomposition levels. 展开更多
关键词 WPA wavelet PACKET decomposition (WPD) SNR HAAR
暂未订购
Separation of closely spaced modes by combining complex envelope displacement analysis with method of generating intrinsic mode functions through filtering algorithm based on wavelet packet decomposition 被引量:3
13
作者 Y.S.KIM 陈立群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期801-810,共10页
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo... One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method. 展开更多
关键词 empirical mode decomposition (EMD) wavelet packet decomposition com- plex envelope displacement analysis (CEDA) closely spaced modes modal identification
在线阅读 下载PDF
Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm 被引量:8
14
作者 ZHANG Ye YANG Shiping +2 位作者 GUO Zhenhai GUO Yanling ZHAO Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期107-115,共9页
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In... Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models. 展开更多
关键词 Wind speed forecast wavelet decomposition neural network Cuckoo search algorithm
在线阅读 下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:7
15
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
在线阅读 下载PDF
Phase space reconstruction of chaotic dynamical system based on wavelet decomposition 被引量:2
16
作者 游荣义 黄晓菁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期114-118,共5页
In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decompo... In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decomposition of chaotic dynamical system is essentially a projection of chaotic attractor on the axes of space opened by the wavelet filter vectors, which corresponds to the time-delayed embedding method of phase space reconstruction proposed by Packard and Takens. The experimental results show that, the structure of dynamical trajectory of chaotic system on the wavelet space is much similar to the original system, and the nonlinear invariants such as correlation dimension, Lyapunov exponent and Kolmogorov entropy are still reserved. It demonstrates that wavelet decomposition is effective for characterizing chaotic dynamical system. 展开更多
关键词 chaotic dynamical system phase space reconstruction wavelet decomposition
原文传递
Features of energy distribution for blast vibration signals based on wavelet packet decomposition 被引量:5
17
作者 LING Tong-hua LI Xi-bing DAI Ta-gen PENG Zhen-bin 《Journal of Central South University of Technology》 2005年第z1期135-140,共6页
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non... Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria. 展开更多
关键词 BLASTING vibration NON-STATIONARY random signal energy distribution wavelet TRANSFORM wavelet PACKET decomposition
在线阅读 下载PDF
Insight into Urban Faults by Wavelet Multi-Scale Analysis and Modeling of Gravity Data in Shenzhen,China 被引量:3
18
作者 Chuang Xu Haihong Wang +2 位作者 Zhicai Luo Hualiang Liu Xiangdong Liu 《Journal of Earth Science》 SCIE CAS CSCD 2018年第6期1340-1348,共9页
Urban faults in Shenzhen are potential threats to city security and sustainable development. In consideration of the importance of the Shenzhen fault zone, the author provide a detailed interpretation on gravity data ... Urban faults in Shenzhen are potential threats to city security and sustainable development. In consideration of the importance of the Shenzhen fault zone, the author provide a detailed interpretation on gravity data model. Bouguer gravity covering the whole Shenzhen City was calculated with a 1-km resolution. Wavelet multi-scale analysis(MSA) was applied to the Bouguer gravity data to obtain the multilayer residual anomalies corresponding to different depths. In addition, 2D gravity models were constructed along three profiles. The Bouguer gravity anomaly shows an NE-striking high-low-high pattern from northwest to southeast, strongly related to the main faults. According to the results of MSA, the correlation between gravity anomaly and faults is particularly significant from 4 to 12 km depth. The residual gravity with small amplitude in each layer indicates weak tectonic activity in the crust. In the upper layers, positive anomalies along most of faults reveal the upwelling of high-density materials during the past tectonic movements. The multilayer residual anomalies also yield important information about the faults, such as the vertical extension and the dip direction. The maximum depth of the faults is about 20 km. In general, NE-striking faults extend deeper than NW-striking faults and have a larger dip angle. 展开更多
关键词 urban faults Bouguer gravity anomaly wavelet multi-scale analysis gravity modeling SHENZHEN
原文传递
Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis 被引量:4
19
作者 Arturo GARCIA-PEREZ Juan P. AMEZQUITA-SANCHEZ +3 位作者 Aurelio DOMINGUEZ-GONZALEZ Ramin SEDAGHATI Roque OSORNIO-RIOS Rene J. ROMERO-TRONCOSO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期615-630,共16页
Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real str... Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on structures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decomposition (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to improve the characteristics and life span of real structures. 展开更多
关键词 Truss structure Vibration Spectral analysis wavelet packet transform Empirical mode decomposition Artificialneural network (ANN)
原文传递
Low Bit Rate Underwater Video Image Compression and Coding Method Based on Wavelet Decomposition 被引量:3
20
作者 Yonggang He Xiongzhu Bu +1 位作者 Ming Jiang Maojun Fan 《China Communications》 SCIE CSCD 2020年第9期210-219,共10页
In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient dow... In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient down-sampling,the visual redundancy of underwater image is removed and the computational coefficients and coding bits are reduced.At the same time,combined with multi-level wavelet decomposition,inter frame motion compensation,entropy coding and other methods,according to the characteristics of different types of frame image data,reduce the number of calculations and improve the coding efficiency.The experimental results show that the reconstructed image quality can meet the visual requirements,and the average compression ratio of underwater video can meet the requirements of underwater acoustic channel transmission rate. 展开更多
关键词 low bit rate DOWN-SAMPLING wavelet decomposition underwater video coding
在线阅读 下载PDF
上一页 1 2 219 下一页 到第
使用帮助 返回顶部