Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-ban...Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.展开更多
Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ...Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.展开更多
This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the ...This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the feature of impact factor in vibration signals and considering the non-placidity and non-linear of vibration diagnosis signals, the authors import wavelet analysis and fractal theory as the tools of faulty signal feature description. Experimental results proved the validity of this method. To some extent, this method provides a good approach of resolving the wholesome problem of fault feature symptom description.展开更多
Wavelet transformation is a widely used method in high-frequency sequence stratigraphic analysis.However, the application is problematic since different wavelets always return the same sequence analysis results. To ad...Wavelet transformation is a widely used method in high-frequency sequence stratigraphic analysis.However, the application is problematic since different wavelets always return the same sequence analysis results. To address this issue, we applied five commonly used wavelets to theoretical sequence models to document some application criteria. Five gradual scale-change sequence models were simplified from the glutenite succession deposition by gravity flows to form the fining-upwards cycle sequences(FUCS) and coarsening-upwards cycle sequences(CUCS). After conducting theoretical sequence model tests, the optimal wavelet(sym4) was selected and successfully used with actual data to identify the sequence boundaries. We also proposed a new method to optimize the scale of continuous wavelet transformation(CWT) for sequence boundary determination. We found that the balloon-like marks in scalograms of db4, sym4, and coif4 wavelet determine, respectively, the fourth-order sequence boundary, the thick succession sequence boundaries in FUCS, and the thick succession sequence in FUCS and CUCS. Comparing the sequence identification results shows that the asymmetric wavelets had an advantage in high-frequency sequence boundary determination and sedimentary cycle discrimination through the amplitude trend of the coefficient, in which the sym4 wavelet is the most effective. In conclusion, the asymmetry of wavelets is the first selection principle, of which asymmetric wavelets are more sensitive to sediment deposition by flood flows. The match of the wavelet between the sequence is the second selection principle, in which the correlation of time-frequency impacts the accuracy of sequence surface localization. However, the waveform of the wavelet is a visual and abstract parameter for sequence boundary detection. The appropriate wavelet for lacustrine sequence analysis is the asymmetric wavelet with a weak number of side lobes. The depositional flows, depositional process,and autogenic are three sedimentary factors that influence the sequence analysis results.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals i...Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.展开更多
The density field around a vortex generator (VG) in supersonic flow is studied with a nanoparticle-based planar laser scattering (NPLS) method. Based on the calibration, i.e., the density distribution of the super...The density field around a vortex generator (VG) in supersonic flow is studied with a nanoparticle-based planar laser scattering (NPLS) method. Based on the calibration, i.e., the density distribution of the supersonic flow around a wedge, the density field of a supersonic VG is measured. According to movement characteristics of coherent structure in VG’s flow fields and the basic concepts of wavelet, the density fluctuating signals and multi-resolution characteristics of density field images are studied. The multi-resolution characteristics of density fluctuation can be analyzed with wavelet transformation of NPLS images. The wavelet approximate coefficients of density fluctuating signals exhibit their characteristics at different scales, and the corresponding detail coefficients show the difference of diverse layer smooth approximation in some way. Based on 2D wavelet decomposition and reconstruction of density field images, the approximate and detail signals at different scales are studied, and the coherent structures at different scales are extracted and analyzed.展开更多
A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement s...A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.展开更多
In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is ...In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is obtained by constructing multi-resolution signals from the only observed finite duration signal. Achieved resolutions meet bounds of the uncertainty principle (Heisenberg inequality). In the forthcoming parts of this series, multi-resolution Fourier performances are observed, applied to short signals and extended to time-frequency analysis.展开更多
Along with the massive applications of the non-linear loads and the impact loads, many non-stationary stochastic signals such as harmonics, inter-harmonics, impulse signals and so on are introduced into the electric n...Along with the massive applications of the non-linear loads and the impact loads, many non-stationary stochastic signals such as harmonics, inter-harmonics, impulse signals and so on are introduced into the electric network, and these non-stationary stochastic signals have had effects on the accuracy of the measurement of electric energy. The traditional method like Fourier Analysis can he applied efficiently on the stationary stochastic signals, hut it has little effect on non-stationary stochastic signals. In light of this, the form of the signals of the electric network in wavelet domain will he discussed in this paper. A measurement method of active power based on multi-resolution analysis in the stochastic process is presented. This method has a wider application scope compared with the traditional method Fourier analysis, and it is of good referential value and practical value in terms of raising the level of the existing electric energy measurement.展开更多
In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the first part of this series. Missing signal recovery derived from multi-resolution theory is deve...In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the first part of this series. Missing signal recovery derived from multi-resolution theory is developed. It is shown that multi-resolution Fourier analysis enhances dramatically performances of Fourier spectra suffering limitations traced to implicit time windowing. Observed frequency resolutions, improvement of frequency estimations, contraction of spectral leakage and recovery of missing parts of finite duration signals are in accordance with theoretical predictions.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieram...In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieramhical cluster analysis (HCA). The results showed that the infrared spectra were similar on the whole, but there were differences in peak position, peak shape and peak absorption intensity in the range of 1 800-700 cm-1. The infrared spectra in the range of 1 800-700 cm-1 were selected to perform continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The 15th-Ievel decomposition coefficients of CWT and the 5=-level detail coefficients of DWT were classified by PCA and HCA. The cumulative contri- bution rates of the first three principal components of CWT and DWT were 93.12% and 89.78%, respectively. The accurate recognition rates of PCA and HCA were all 100%. It is proved that FTIR combined with WT can be used to distinguish different kinds of rhizome crops.展开更多
Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological prote...Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.展开更多
Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a sev...Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.展开更多
Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting...Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.展开更多
A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- estab...A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- established long-term daily temperature series back to the 18th century, which have been "homogenized" with conventional approaches. Various types of problems remaining in the series were revealed with the wavelet method. Their influences on analyses of change in climate extremes are discussed. The results have importance for understanding issues in conventional climate data processing and for development of improved methods of homogenization in order to improve analysis of climate extremes based on daily data.展开更多
基金supported by the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(Grant No.2023C02018)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002)+2 种基金National Natural Science Foundation of China(Grant No.42371385)Funds of the Natural Science Foundation of Hangzhou(Grant No.2024SZRYBD010001)Nanxun Scholars Program of ZJWEU(Grant No.RC2022010755).
文摘Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.
基金supported by the Technology Innovation Program(20023566,‘Development and Demonstration of Industrial IoT and AI-Based Process Facility Intelligence Support System in Small and Medium Manufacturing Sites’)funded by the Ministry of Trade,Industry,&Energy(MOTIE,Republic of Korea).
文摘Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.
文摘This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the feature of impact factor in vibration signals and considering the non-placidity and non-linear of vibration diagnosis signals, the authors import wavelet analysis and fractal theory as the tools of faulty signal feature description. Experimental results proved the validity of this method. To some extent, this method provides a good approach of resolving the wholesome problem of fault feature symptom description.
文摘Wavelet transformation is a widely used method in high-frequency sequence stratigraphic analysis.However, the application is problematic since different wavelets always return the same sequence analysis results. To address this issue, we applied five commonly used wavelets to theoretical sequence models to document some application criteria. Five gradual scale-change sequence models were simplified from the glutenite succession deposition by gravity flows to form the fining-upwards cycle sequences(FUCS) and coarsening-upwards cycle sequences(CUCS). After conducting theoretical sequence model tests, the optimal wavelet(sym4) was selected and successfully used with actual data to identify the sequence boundaries. We also proposed a new method to optimize the scale of continuous wavelet transformation(CWT) for sequence boundary determination. We found that the balloon-like marks in scalograms of db4, sym4, and coif4 wavelet determine, respectively, the fourth-order sequence boundary, the thick succession sequence boundaries in FUCS, and the thick succession sequence in FUCS and CUCS. Comparing the sequence identification results shows that the asymmetric wavelets had an advantage in high-frequency sequence boundary determination and sedimentary cycle discrimination through the amplitude trend of the coefficient, in which the sym4 wavelet is the most effective. In conclusion, the asymmetry of wavelets is the first selection principle, of which asymmetric wavelets are more sensitive to sediment deposition by flood flows. The match of the wavelet between the sequence is the second selection principle, in which the correlation of time-frequency impacts the accuracy of sequence surface localization. However, the waveform of the wavelet is a visual and abstract parameter for sequence boundary detection. The appropriate wavelet for lacustrine sequence analysis is the asymmetric wavelet with a weak number of side lobes. The depositional flows, depositional process,and autogenic are three sedimentary factors that influence the sequence analysis results.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金This project was supported by the National Natural Science Foundation of China (60672034)the Research Fund for the Doctoral Program of Higher Education(20060217021)the Natural Science Foundation of Heilongjiang Province of China (ZJG0606-01)
文摘Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.
基金National Natural Science Foundation of China (11072264)
文摘The density field around a vortex generator (VG) in supersonic flow is studied with a nanoparticle-based planar laser scattering (NPLS) method. Based on the calibration, i.e., the density distribution of the supersonic flow around a wedge, the density field of a supersonic VG is measured. According to movement characteristics of coherent structure in VG’s flow fields and the basic concepts of wavelet, the density fluctuating signals and multi-resolution characteristics of density field images are studied. The multi-resolution characteristics of density fluctuation can be analyzed with wavelet transformation of NPLS images. The wavelet approximate coefficients of density fluctuating signals exhibit their characteristics at different scales, and the corresponding detail coefficients show the difference of diverse layer smooth approximation in some way. Based on 2D wavelet decomposition and reconstruction of density field images, the approximate and detail signals at different scales are studied, and the coherent structures at different scales are extracted and analyzed.
基金financial support by the Open Foundation of Chongqing Key Laboratory of Geomechanics and Geoenvironment Protection(Logistical Engineering University)(No.GKLGGP 2013-02)
文摘A multi-resolution rectangular shell element with membrane-bending based on the Kirchhoff-Love theory is proposed. The multi-resolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape functions. The basic node shape functions are constructed from shifting to other three quadrants around a specific node of a basic element in one quadrant and joining the corresponding node shape functions of four elements at the specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. The node shape functions of Kronecker delta property make the treatment of element boundary condition quite convenient and enable the stiffness matrix and the loading column vectors of the proposed element to be automatically acquired through quadraturing around nodes in RL adjusting. As a result, the traditional 4-node rectangular shell element is a mono-resolution one and also a special case of the proposed element. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The simplicity and clarity of node shape function formulation with the Kronecker delta property, and the rational MRA enable the proposed element method to be implemented more rationally, easily and efficiently than the conventional mono-resolution rectangular shell element method or other corresponding MRA methods.
文摘In the first paper of this series, we propose a multi-resolution theory of Fourier spectral estimates of finite duration signals. It is shown that multi-resolution capability, achieved without further observation, is obtained by constructing multi-resolution signals from the only observed finite duration signal. Achieved resolutions meet bounds of the uncertainty principle (Heisenberg inequality). In the forthcoming parts of this series, multi-resolution Fourier performances are observed, applied to short signals and extended to time-frequency analysis.
文摘Along with the massive applications of the non-linear loads and the impact loads, many non-stationary stochastic signals such as harmonics, inter-harmonics, impulse signals and so on are introduced into the electric network, and these non-stationary stochastic signals have had effects on the accuracy of the measurement of electric energy. The traditional method like Fourier Analysis can he applied efficiently on the stationary stochastic signals, hut it has little effect on non-stationary stochastic signals. In light of this, the form of the signals of the electric network in wavelet domain will he discussed in this paper. A measurement method of active power based on multi-resolution analysis in the stochastic process is presented. This method has a wider application scope compared with the traditional method Fourier analysis, and it is of good referential value and practical value in terms of raising the level of the existing electric energy measurement.
文摘In this paper, we report application procedures and observed results of multi-resolution Fourier analysis proposed in the first part of this series. Missing signal recovery derived from multi-resolution theory is developed. It is shown that multi-resolution Fourier analysis enhances dramatically performances of Fourier spectra suffering limitations traced to implicit time windowing. Observed frequency resolutions, improvement of frequency estimations, contraction of spectral leakage and recovery of missing parts of finite duration signals are in accordance with theoretical predictions.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team in Science and Technology in University of Yunnan Province~~
文摘In order to distinguish 8 kinds of rhizome crops, the 40 samples were studied by Fourier transform infrared spectroscopy (FTIR) combined with wavelet transform (WT), principal component analysis (PCA) and hieramhical cluster analysis (HCA). The results showed that the infrared spectra were similar on the whole, but there were differences in peak position, peak shape and peak absorption intensity in the range of 1 800-700 cm-1. The infrared spectra in the range of 1 800-700 cm-1 were selected to perform continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The 15th-Ievel decomposition coefficients of CWT and the 5=-level detail coefficients of DWT were classified by PCA and HCA. The cumulative contri- bution rates of the first three principal components of CWT and DWT were 93.12% and 89.78%, respectively. The accurate recognition rates of PCA and HCA were all 100%. It is proved that FTIR combined with WT can be used to distinguish different kinds of rhizome crops.
基金supported by the National Key Research and Development Program of China(No.2022YFC3204301).
文摘Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.
基金Chinese Science Technology and Industry Foundation for National Defense(FEBG27100001)
文摘Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.
基金funded by National Natural Science Foundation of China (Grant No. 41375038)China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201306040,GYHY201306075)
文摘Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.
文摘A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- established long-term daily temperature series back to the 18th century, which have been "homogenized" with conventional approaches. Various types of problems remaining in the series were revealed with the wavelet method. Their influences on analyses of change in climate extremes are discussed. The results have importance for understanding issues in conventional climate data processing and for development of improved methods of homogenization in order to improve analysis of climate extremes based on daily data.