期刊文献+
共找到2,201篇文章
< 1 2 111 >
每页显示 20 50 100
Self-organizing feature map neural network classification of the ASTER data based on wavelet fusion 被引量:7
1
作者 HASI Bagan MA Jianwen LI Qiqing HAN Xiuzhen LIU Zhili 《Science China Earth Sciences》 SCIE EI CAS 2004年第7期651-658,共8页
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result... Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town. 展开更多
关键词 classification wavelet fusion SELF-ORGANIZING NEURAL network FEATURE map (SOFM) ASTER data.
原文传递
Multi-Focus Image Fusion Based on Wavelet Transformation 被引量:4
2
作者 Peng Zhang Ying-Xun Tang +1 位作者 Yan-Hua Liang Xu-Bo Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期124-128,共5页
In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, whi... In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application. 展开更多
关键词 variance MEASURE image fusion wavelet transformation multi-resolution analysis
在线阅读 下载PDF
Lift fin stabilizers based on data fusion with wavelet denoising technology 被引量:1
3
作者 Yanhua LIANG Kai XUE Hongzhang JIN 《控制理论与应用(英文版)》 EI 2010年第4期485-490,共6页
Fin stabilizers with fin-lift feedback control can shield the mapping error of calculation between the fin angle and fin lift force,which is in the fin stabilizer with fin-angle feedback control.In practice,there are ... Fin stabilizers with fin-lift feedback control can shield the mapping error of calculation between the fin angle and fin lift force,which is in the fin stabilizer with fin-angle feedback control.In practice,there are some technical difficulties in lift fin stabilizers,such as lift force detection and lift force sensor installation,so it cannot achieve the good antirolling performance.Therefore,a fin stabilizer system with fin-lift/fin-angle integrated control is brought forward.Data fusion based on wavelet denoising technology is employed in the system,which combines lift with fin angle local information from two sensors with different frequency ranges in order to eliminate redundant and contradictory information,and using complementary information to obtain the relative integrity of the lift force signal.The system model is established in this paper,and the fusion signal and the antirolling performance of this model are simulated respectively.The result shows that the control system can meet the antirolling need in different sea situations. 展开更多
关键词 Fin-angle feedback control Fin-lift feedback control wavelet denoising Data fusion Fin stabilizers
在线阅读 下载PDF
Multisensor image fusion algorithm using nonseparable wavelet frame transform 被引量:1
4
作者 Li Zhenhua Jing Zhongliang Wang Hong Sun Shaoyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期728-732,共5页
A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coef... A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion. 展开更多
关键词 MULTISENSOR image fusion image processing nonseparable wavelet frame transform.
在线阅读 下载PDF
Wavelet Packet-based Feedback System for Medical Image Fusion
5
作者 YU Oiuyan IHAN Xiaojun 《Semiconductor Photonics and Technology》 CAS 2010年第2期103-109,共7页
In order to meet the requirements of medical research,diagnosis and treatment,a new algorithm for image fusion based on the wavelet packet transform in conjunction with both subjective and objective assessments is put... In order to meet the requirements of medical research,diagnosis and treatment,a new algorithm for image fusion based on the wavelet packet transform in conjunction with both subjective and objective assessments is put forward in the paper.Compared to the wavelet transform,the wavelet packet transform is more intricate and effective for the medical image fusion.As indicated by the experimental results,parameters of the feedback system of the new algorithm are significantly superior to those of the wavelet transform,with practicability and accuracy. 展开更多
关键词 medical image fusion wavelet packet subjective assessment feedback system
在线阅读 下载PDF
Multimodal Medical Image Fusion Methods Based on Improved Discrete Wavelet Transform
6
作者 XU Lei TIAN Shu-chang +4 位作者 CUI Can MENG Qing-le YANG Rui JIANG Hong-bing WANG Feng 《中国医疗设备》 2016年第6期1-6,共6页
Objective This paper proposed a novel algorithm of discrete wavelet transform(DWT) which is used for multimodal medical image fusion. Methods The source medical images are initially transformed by DWT followed by fusi... Objective This paper proposed a novel algorithm of discrete wavelet transform(DWT) which is used for multimodal medical image fusion. Methods The source medical images are initially transformed by DWT followed by fusing low and high frequency sub-images. Then, the "coefficient absolute value" that can provide clear and detail parts is adapted to fuse high-frequency coefficients, where as the "region energy ratio" which can efficiently preserve most information of source images is employed to fuse low-frequency coefficients. Finally, the fused image is reconstructed by inverse wavelet transform. Results Visually and quantitatively experimental results indicate that the proposed fusion method is superior to traditional wavelet transform and the existing fusion methods. Conclusion The proposed method is a feasible approach for multimodal medical image fusion which can obtain more efficient and accurate fusions results even in the noise environment. 展开更多
关键词 医疗设备维修模式 临床医学工程 医疗技术管理 中国医师协会 世界卫生组织 医学工程领域 医疗技术评估 临床工程师
暂未订购
Medical Image Fusion Based on Wavelet Multi-Scale Decomposition
7
作者 Huiping Zhu Bin Wu Peng Ren 《Journal of Signal and Information Processing》 2013年第2期218-221,共4页
This paper describes a method to decompose multi-scale information from different source medical image using wavelet transformation. The data fusion between CT image and MRI image is implemented based on the coefficie... This paper describes a method to decompose multi-scale information from different source medical image using wavelet transformation. The data fusion between CT image and MRI image is implemented based on the coefficients fusion rule which included choice of regional variance and weighted average wavelet information. The result indicates that this method is better than WMF, LEF and RVF on fusion results, details and target distortion. 展开更多
关键词 wavelet TRANSFORM IMAGE fusion REGIONAL Variance Improvement fusion RULE
在线阅读 下载PDF
High Dynamic Range Image Fusion Based on Wavelet
8
作者 SUI Shou-xin 《科技视界》 2013年第12期94-95,78,共3页
With the developpment of image fusion technology and the maturity of wavelet theory, wavelet transform with its good time-frequency characteristics stands out in the field of image fusion. On the basis of wavelet tran... With the developpment of image fusion technology and the maturity of wavelet theory, wavelet transform with its good time-frequency characteristics stands out in the field of image fusion. On the basis of wavelet transforms theory, this article proposes a high dynamic range imaging confusion method which combines with wavelet decomposition. First, perform a wavelet multi-scale decomposition to the two registered source image; then conduct wavelet inverse transform to the decomposed images. This paper focuses on the characteristics of high frequency and low frequency domain after wavelet decomposition,using different fusion methods in each of the frequency domain, finally obtain the fused image through inverse wavelet transform image reconstruction. The simulation results and evaluation index results show that, compared with other similar methods, this method is better in retaining the original image's details information, and improves the quality of fusion image. 展开更多
关键词 小波理论 图像融合技术 仿真结果 小波变换理论
在线阅读 下载PDF
Data Fusion Fault Diagnosis Based on Wavelet Transform and Neural Network
9
作者 Ma Jiancang Luo Lei Wu Qibin P.O.Box 813,Northwestern Polytechnical University,Xi’an,710072,P.R.China 《International Journal of Plant Engineering and Management》 1997年第1期19-24,共6页
According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method bas... According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application. 展开更多
关键词 wavelet analysis neural network data fusion fault diagnosis
在线阅读 下载PDF
Compressed Sensing Based on the Single Layer Wavelet Transform for Image Fusion
10
作者 Guohui Yang Wude Xu +5 位作者 Bo Zheng Fanglan Ma Xuhui Yang Hongwei Ma Hongxia Zhang Genliang Han 《Journal of Computer and Communications》 2016年第15期107-116,共10页
In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the ... In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the low-pass wavelet coefficient. Then, fuse the low-pass wavelet coefficients and the measurements of high-pass wavelet coefficient with different schemes. For the reconstruction, by using the minimization of total variation algorithm (TV), high-pass wavelet coefficients could be recovered by the fused measurements. Finally, the fused image could be reconstructed by the inverse wavelet transform. The experiments show the proposed method provides promising fusion performance with a low computational complexity. 展开更多
关键词 Image fusion Compressed Sensing Single Layer wavelet Transform
在线阅读 下载PDF
A Study on Integrated Wavelet Neural Networks in Fault Diagnosis Based on Information Fusion
11
作者 ANG Xue-ye 《International Journal of Plant Engineering and Management》 2007年第1期42-48,共7页
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n... The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate. 展开更多
关键词 fault diagnosis wavelet analysis integrated neural network information fusion diagnosis rate
在线阅读 下载PDF
Magnetic resonance imaging evaluation and nuclear receptor binding SET domain protein 1 mutation in the Sotos syndrome with attention-deficit/hyperactivity disorder
12
作者 Wei Zhu 《World Journal of Clinical Cases》 SCIE 2025年第2期5-9,共5页
Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopme... Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD. 展开更多
关键词 Sotos syndrome Attention-deficit/hyperactivity disorder Genetic mutation Magnetic resonance imaging wavelet fusion
暂未订购
物联网环境下异步多传感器数据深度融合算法研究
13
作者 殷存举 张薇 《传感技术学报》 北大核心 2025年第7期1321-1326,共6页
在物联网环境中,现有方法未考虑异步多传感器数据融合过程中权重和偏置的计算,从而导致信息出现缺失,降低融合结果的质量。为了改善这个问题,提出了一种考虑引入权重和偏置计算的异步多传感器数据深度融合算法。首先采用经验小波变换方... 在物联网环境中,现有方法未考虑异步多传感器数据融合过程中权重和偏置的计算,从而导致信息出现缺失,降低融合结果的质量。为了改善这个问题,提出了一种考虑引入权重和偏置计算的异步多传感器数据深度融合算法。首先采用经验小波变换方法对异步多传感器数据展开重构处理,提高数据质量;其次利用逐步回归特征选择方法选取出最有信息量的特征,以减少冗余信息降低维度;最后,通过计算选择特征在深度融合过程中的权重与偏置,并结合深度自动编码器网络(DAEN网络),完成对异步多传感器数据的深度融合。结果表明,所提算法均方误差可维持在1.0 dB以下,平均绝对百分比误差在3.5%以下,拟合度为0.96,融合耗时在8.5s以下,具有较好的融合效果和效率。 展开更多
关键词 异步多传感器 数据融合 经验小波变换方法 逐步回归特征选择 DAEN网络
在线阅读 下载PDF
基于WAAP-YOLO的玉米伴生杂草检测模型
14
作者 孟志永 贾雅微 +4 位作者 张秀清 倪永婧 张明 武琪 吴晨曦 《河北科技大学学报》 北大核心 2025年第4期386-394,共9页
为解决玉米伴生杂草存在样本形态各异、密集遮挡、背景复杂、尺度不一等问题,提出了目标检测模型WAAP-YOLO。首先,改进主干部分,将部分卷积替换为小波池化卷积,有效避免了混叠伪影现象;其次,引入聚合注意力机制构建C2f-AA模块,提升了模... 为解决玉米伴生杂草存在样本形态各异、密集遮挡、背景复杂、尺度不一等问题,提出了目标检测模型WAAP-YOLO。首先,改进主干部分,将部分卷积替换为小波池化卷积,有效避免了混叠伪影现象;其次,引入聚合注意力机制构建C2f-AA模块,提升了模型在复杂背景下对杂草特征的提取能力;最后,以ASF-P2-Net替换原始neck网络,通过尺度序列融合模块引入P2检测头,降低模型复杂度,显著提升小目标检测效果。结果表明,WAAP-YOLO检测算法的mAP@0.5指标、mAP@0.5∶0.95指标、F1、参数量分别为97.2%、85.8%、94.0%、2.1×10^(6),优于YOLOv5s、YOLOv8n、YOLOv10n等常见目标检测模型。所提模型可显著提升玉米田间杂草的精准识别能力,可为促进种植业的智能化和可持续发展提供参考。 展开更多
关键词 计算机神经网络 杂草识别 小波池化 注意力机制 多尺度融合
在线阅读 下载PDF
抗混叠与多尺度特征融合的水下目标检测算法
15
作者 王书朋 李凡 《计算机工程与应用》 北大核心 2025年第18期209-217,共9页
针对水下环境复杂性带来的多尺度目标检测挑战,提出了改进算法WPS-YOLOv8。设计了小波池化卷积模块(wavelet pooling convolution,WPConv),该模块通过小波池化技术降低通道压缩后特征图的分辨率,有效抑制了传统下采样过程中产生的频率... 针对水下环境复杂性带来的多尺度目标检测挑战,提出了改进算法WPS-YOLOv8。设计了小波池化卷积模块(wavelet pooling convolution,WPConv),该模块通过小波池化技术降低通道压缩后特征图的分辨率,有效抑制了传统下采样过程中产生的频率混叠伪影,提升了特征提取质量和表达能力。提出了局部逐点分组重排卷积模块(partial pointwise group shuffle convolution,PGConv),该模块通过结合局部卷积与逐点卷积,能够在减少信息冗余的同时保持通道间的信息交互,弥补了深度可分离卷积的不足,增强了特征融合效果。提出了ShapeLoss损失函数,综合考虑影响不同尺度目标检测精度的因素,通过集成Shape-IoU和Shape-NWD两种损失测度,有效提升了对多尺度目标的总体检测精度。实验结果显示,相较于YOLOv8,WPS-YOLOv8在URPC2018和UTDAC2020水下数据集上的平均精度均值(mean average precision,mAP)分别提升了8.6和4.4个百分点,展现了其在水下多尺度目标检测中的出色表现。 展开更多
关键词 海洋底栖生物 水下目标检测 小波池化 多尺度特征融合
在线阅读 下载PDF
基于WOA-DWT算法的涡轮叶片DR图像融合
16
作者 陈乐 朱珊珊 +2 位作者 叶振宇 李赞 陶训 《无损检测》 2025年第7期46-52,67,共8页
为保证大厚度比复杂结构工件的数字射线(DR)检测图像质量,丰富其细节信息,提出一种基于鲸鱼优化算法(WOA)与离散小波变换(DWT)的图像融合算法。以航空发动机涡轮叶片为研究对象,首先,将不同管电压透照子图进行小波分解,得到一个低频子... 为保证大厚度比复杂结构工件的数字射线(DR)检测图像质量,丰富其细节信息,提出一种基于鲸鱼优化算法(WOA)与离散小波变换(DWT)的图像融合算法。以航空发动机涡轮叶片为研究对象,首先,将不同管电压透照子图进行小波分解,得到一个低频子带和多尺度高频子带;然后,对低频子带采用局部均方差加权求和的融合规则,高频子带在区域能量最大化的基础上,对适应性系数和能量阈值采用WOA寻优且适应度函数由信息熵和清晰度构建综合评价指标的融合规则;最后,通过小波逆变换得到融合图像。试验结果表明,相较于主成分分析法、拉普拉斯金字塔变换和传统小波融合算法,该方法在信息熵、空间频率、标准差以及平均梯度等指标上均有提高,得到的图像细节信息更加丰富、质量更高。 展开更多
关键词 航空发动机涡轮叶片 数字射线检测 图像融合 离散小波变换 鲸鱼优化算法
在线阅读 下载PDF
基于多尺度特征自注意力模型的地震数据重建方法
17
作者 耿鑫 王长鹏 +2 位作者 张春霞 张讲社 熊登 《吉林大学学报(地球科学版)》 北大核心 2025年第3期1001-1013,共13页
由于采集条件和成本的限制,叠前地震数据在空间上会出现不规则分布或不完整的情况,给地震数据的后续处理和解释带来困难。近年来广泛应用于缺失地震数据重建工作的卷积神经网络方法缺乏对全局信息的关注,同时多次下采样的网络模型会带... 由于采集条件和成本的限制,叠前地震数据在空间上会出现不规则分布或不完整的情况,给地震数据的后续处理和解释带来困难。近年来广泛应用于缺失地震数据重建工作的卷积神经网络方法缺乏对全局信息的关注,同时多次下采样的网络模型会带来低频信号损失,低振幅缺失部分的重建结果仍需要进一步改进。本文提出了一种多尺度特征自注意力模型,在U-Net主干网络的瓶颈处设计了一个基于自注意力机制的多尺度小波融合块,通过离散小波变换和自注意力机制将所有编码器的输出进行融合,有效平衡全局和局部特征处理,降低下采样带来的信号损失;在网络中插入多尺度感受野,通过学习不同退化数据的多尺度特征来提高性能,增强对不同频率的频谱学习。与经典的地震数据重建方法相比,本文算法的重建结果在定性和定量评估方面均有提升:在30%连续缺失的合成数据集和真实数据集上,重建结果的信噪比分别为21.7487和14.9540 dB;在50%随机缺失和规则缺失的合成数据集上,重建结果的信噪比分别为28.8320和37.7242 dB。 展开更多
关键词 自注意力机制 小波融合 多尺度感受野 地震数据重建
在线阅读 下载PDF
基于边缘引导滤波增强和GWT的红外与微光图像融合 被引量:1
18
作者 盛志超 张昦润 王赫 《红外技术》 北大核心 2025年第7期793-801,共9页
图像融合是用特定的算法将两幅或多幅图像融合为一幅新的图像,用于提高图像的辨识度和细节丰富度。本文针对传统红外与微光图像融合方法出现细节缺失、边缘纹理不清晰等问题,提出了一种基于边缘引导滤波增强和图小波变换(Graph Wavelet ... 图像融合是用特定的算法将两幅或多幅图像融合为一幅新的图像,用于提高图像的辨识度和细节丰富度。本文针对传统红外与微光图像融合方法出现细节缺失、边缘纹理不清晰等问题,提出了一种基于边缘引导滤波增强和图小波变换(Graph Wavelet Transform,GWT)的图像融合算法。首先,使用边缘引导滤波对微光图像进行预处理增强。接着使用GWT对红外和微光图像分别进行多尺度分解,得到各自的低频子带图像和高频子带图像。对低频子图像,使用滚动引导滤波(Rolling Guidance Filtering,RGF)进行分解得到基础层和细节层,其中基础层利用视觉显著映射(Visual Saliency Map,VSM)进行融合,细节层利用最大绝对值原则(Max Absolute,MA)进行融合;对高频子图像,采用区域能量最大进行融合。最后,对融合后的低频和高频子带图像进行GWT反变换,得到最终的融合结果。在公开数据集上的实验结果表明,该方法表现出较好的主观视觉效果,优于所比较的其他算法,且保留了更多的纹理信息和边缘细节。 展开更多
关键词 图像融合 图小波变换 边缘引导滤波 滚动引导滤波
在线阅读 下载PDF
基于自适应色彩补偿和小波融合的水下图像增强
19
作者 曹瑞 胡红萍 杨正民 《火力与指挥控制》 北大核心 2025年第9期74-81,共8页
针对水下图像发生图像色偏严重、对比度不足以及细节模糊,提出一种基于自适应色彩补偿和小波融合的水下图像增强算法。利用四叉树法判断图像的色偏类型,进行自适应色彩补偿消除色偏,获取色彩平衡图像。通过亮度和细节双重增强处理,在HS... 针对水下图像发生图像色偏严重、对比度不足以及细节模糊,提出一种基于自适应色彩补偿和小波融合的水下图像增强算法。利用四叉树法判断图像的色偏类型,进行自适应色彩补偿消除色偏,获取色彩平衡图像。通过亮度和细节双重增强处理,在HSV空间中利用改进的小波融合算法对色彩平衡图、亮度增强图和细节增强图融合,提升图像细节和对比度,得到最终图像。实验表明算法可以有效校正图像色彩,提高图像对比度和细节。 展开更多
关键词 四叉树 色彩补偿 小波融合 水下图像 图像增强
在线阅读 下载PDF
基于光照度适应与小波融合的水下图像增强
20
作者 张贵平 何志琴 《电子测量技术》 北大核心 2025年第12期146-155,共10页
水下成像由于光的被吸收和散射现象,导致水下图像往往存在细节丢失、颜色偏差和光照度损失、过曝等问题。针对上述问题,本文提出了一种基于光照度适应与小波融合的增强算法。利用优化对数变换提升图像整体亮度,并通过高斯核函数卷积运... 水下成像由于光的被吸收和散射现象,导致水下图像往往存在细节丢失、颜色偏差和光照度损失、过曝等问题。针对上述问题,本文提出了一种基于光照度适应与小波融合的增强算法。利用优化对数变换提升图像整体亮度,并通过高斯核函数卷积运算生成适应背景光照度的增强图像,再与水下图像通过小波多尺度融合以增强水下图像的低照度区域,同时压制过曝区域。其次,通过计算颜色通道的均值,以调整融合后图像的对比度和色彩饱和度。最后,通过小波迭代融合其Gamma矫正和锐化后的图像得到最终水下增强图像。实验结果表明,本文算法能够有效增强图像细节、恢复图像色差;图像的IE、UCIQE和UIQM的均值较原始图像分别提高了7.5%、36.6%和199.8%。 展开更多
关键词 水下图像增强 光照度适应 高斯核函数卷积运算 高斯滤波 小波迭代融合
原文传递
上一页 1 2 111 下一页 到第
使用帮助 返回顶部