Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra...Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.展开更多
Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-ban...Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum ...In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.展开更多
A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this wor...A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.展开更多
Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embe...Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content.Image watermarking can also be used to verify the authenticity of digital media,such as images or videos,by ascertaining the watermark information.In this paper,a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform(DWT),chaotic map,and Laplacian operator.The DWT can be used to decompose the image into its frequency components,chaos is used to provide extra security defense by encrypting the watermark signal,and the Laplacian operator with optimization is applied to the mid-frequency bands to find the sharp areas in the image.These mid-frequency bands are used to embed the watermarks by modifying the coefficients in these bands.The mid-sub-band maintains the invisible property of the watermark,and chaos combined with the second-order derivative Laplacian is vulnerable to attacks.Comprehensive experiments demonstrate that this approach is effective for common signal processing attacks,i.e.,compression,noise addition,and filtering.Moreover,this approach also maintains image quality through peak signal-to-noise ratio(PSNR)and structural similarity index metrics(SSIM).The highest achieved PSNR and SSIM values are 55.4 dB and 1.In the same way,normalized correlation(NC)values are almost 10%–20%higher than comparative research.These results support assistance in copyright protection in multimedia content.展开更多
Predicting the currency exchange rate is crucial for financial agents,risk managers,and policymakers.Traditional approaches use publicly announced news on macroeconomic and financial variables as predictors of currenc...Predicting the currency exchange rate is crucial for financial agents,risk managers,and policymakers.Traditional approaches use publicly announced news on macroeconomic and financial variables as predictors of currency exchange.However,the rise of social media may have changed the source of information.For instance,tweets can help investors make informed decisions about the foreign exchange(FX)market by reflecting market sentiment and opinion.From another aspect,changes in currency exchange may incite agents to post tweets.Are tweets good predictors of currency exchange?Is the relationship between tweets and currency exchange bidirectional?We investigate the comovement/causality between the number of#dolar(“enflasyon”resp.)tweets and USDTRY currency exchange using wavelet coherence and transfer entropy(TE)to answer these questions.Wavelet coherence allows us to determine the relationship between the number of tweets and the USDTRY rate by considering the time–frequency domain.TE enables us to quantify the net information flow between the number of tweets and USDTRY.Data from October 2020 to March 2022 were used.The obtained results remain robust regardless of the frequency of retained data(daily or hourly)and the methods used(wavelet or TE).Based on our results,USDTRY is correlated with the number of#dolar tweets(#inflation)mainly in the short run and a few times in the medium run.These relationships change through time and frequency(wavelet analysis results).However,the results from TE indicate a bidirectional relationship between the#dolar(#inflation)tweets number and the USDTRY exchange rate.The influence of the exchange rate on the number of tweets is highly pronounced.Financial agents,risk managers,policymakers,and investors should then pay moderate attention to the number of#dolar(#inflation)tweets in trading/forecasting the USD–TRY exchange rate.展开更多
In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the ...In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the capacity of ViT to capture global features,it compromises the preservation of fine-grained local feature information.To address these challenges,we propose a spatial positional enhancement module and a wavelet transform enhancement module tailored for ViT models.These modules aim to reduce spatial positional information loss during the patch embedding process and enhance the model’s feature extraction capabilities.The spatial positional enhancement module reinforces spatial information in sequential data through convolutional operations and multi-scale feature extraction.Meanwhile,the wavelet transform enhancement module utilizes the multi-scale analysis and frequency decomposition to improve the ViT’s understanding of global and local image structures.This enhancement also improves the ViT’s ability to process complex structures and intricate image details.Experiments on CIFAR-10,CIFAR-100 and ImageNet-1k datasets are done to compare the proposed method with advanced classification methods.The results show that the proposed model achieves a higher classification accuracy,confirming its effectiveness and competitive advantage.展开更多
Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection...Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals.展开更多
In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,ex...In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,existing numerical methods often struggle with the computational challenges posed by such equations,especially in nonlinear,multi-term formulations.This study introduces two hybrid numerical methods—the Linear-Sine and Cosine(L1-CAS)and fast-CAS schemes—for solving linear and nonlinear multi-term Caputo variable-order(CVO)fractional partial differential equations.These methods combine CAS wavelet-based spatial discretization with L1 and fast algorithms in the time domain.A key feature of the approach is its ability to efficiently handle fully coupled spacetime variable-order derivatives and nonlinearities through a second-order interpolation technique.In addition,we derive CAS wavelet operational matrices for variable-order integration and for boundary value problems,forming the foundation of the spatial discretization.Numerical experiments confirm the accuracy,stability,and computational efficiency of the proposed methods.展开更多
Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal ro...Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.展开更多
Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ...Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.展开更多
This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two ke...This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks.展开更多
In this paper,we used higher order Haar wavelet method(HOHWM),introduced by Majak et al.[1],for approximate solution of second order integro-diferential equations(IDEs)of second-kind.It is improvement of long-establis...In this paper,we used higher order Haar wavelet method(HOHWM),introduced by Majak et al.[1],for approximate solution of second order integro-diferential equations(IDEs)of second-kind.It is improvement of long-established Haar wavelet collocation method(HWCM)which has been much popular among researchers and has many applications in literature.Present study aims to improve the numerical results of second order IDEs from first order rate of convergence in case of HWCM to the second and fourth order rate of convergence using HOHWM,depending on parameterλfor values 1 and 2,respectively.Several problems available in the literature of both,Volterra and Fredholm type of IDEs,are tested and compared with HWCM to illustrate the performance of our proposed method.展开更多
Plasma spark sources are widely used in high-resolution seismic exploration.However,research on the excitation mechanism and propagation characteristics of plasma spark sources is very limited.In this study,we elabora...Plasma spark sources are widely used in high-resolution seismic exploration.However,research on the excitation mechanism and propagation characteristics of plasma spark sources is very limited.In this study,we elaborated on the excitation process of corona discharge plasma spark source based on indoor experimental data.The electrode spacing has a direct impact on the movement of bubbles.As the spacing between bubbles decreases,they collapsed and fused,thereby suppressing the secondary pulse process.Based on the premise of linear arrangement and equal energy synchronous excitation,the motion equation of multiple bubbles under these conditions was derived,and a calculation method for the near-field wavelet model of plasma spark source was established.We simulated the source signals received in different directions and constructed a spatial wavelet face spectrum.Compared with traditional far-field wavelets,the spatial wavelet facial feature representation method provides a more comprehensive display of the variation characteristics and propagation properties of source wavelets in three-dimensional space.The spatial wavelet variation process of the plasma spark source was analyzed,and the source depth and the virtual reflection path are the main factors affecting the wavelet.The high-frequency properties of plasma electric spark source wavelets lead to their sensitivity to factors such as wave fluctuations,position changes,and environmental noise.Minor changes in collection parameters may result in significant changes in the recorded waveform and final data resolution.So,the facial feature method provides more effective technical support for wavelet evaluation.展开更多
A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias pr...A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias prediction.Wavelet analysis was first used to break down the satellite clock frequency data into several levels,producing high and low frequency coefficients for each layer.The correlation coefficients of the high and low frequency coefficients in each of the three sub-intervals created by splitting these coefficients were then determined.The major noise region—the sub-interval with the lowest correlation coefficient—was chosen for thresholding treatment and noise threshold computation.The clock frequency data was then processed using wavelet reconstruction and reconverted to clock data.Lastly,three different kinds of satellite clock data—RTS,whu-o,and IGS-F—were used to confirm the produced data.Our method enhanced the stability of the Quadratic Polynomial(QP)model’s predictions for the C16 satellite by about 40%,according to the results.The accuracy and stability of the Auto Regression Integrated Moving Average(ARIMA)model improved up to 41.8%and 14.2%,respectively,whilst the Wavelet Neural Network(WNN)model improved by roughly 27.8%and 63.6%,respectively.Although our method has little effect on forecasting IGS-F series satellites,the experimental findings show that it can improve the accuracy and stability of QP,ARIMA,and WNN model forecasts for RTS and whu-o satellite clock bias.展开更多
A wavelet-based local and global feature fusion network(LAGN)is proposed for low-light image enhancement,aiming to enhance image details and restore colors in dark areas.This study focuses on addressing three key issu...A wavelet-based local and global feature fusion network(LAGN)is proposed for low-light image enhancement,aiming to enhance image details and restore colors in dark areas.This study focuses on addressing three key issues in low-light image enhancement:Enhancing low-light images using LAGN to preserve image details and colors;extracting image edge information via wavelet transform to enhance image details;and extracting local and global features of images through convolutional neural networks and Transformer to improve image contrast.Comparisons with state-of-the-art methods on two datasets verify that LAGN achieves the best performance in terms of details,brightness,and contrast.展开更多
Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do n...Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.展开更多
In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interfac...In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interface capturing(THINC)technique.We employ boundary variation diminishing(BVD)reconstruction to enhance the scheme’s effectiveness in handling shocks.First,we prove that wavelet collocation upwind schemes based on interpolating wavelets can be reformulated into a conservative form within the framework of wavelet theory,forming the foundation of the proposed scheme.The new fourthorder accurate scheme possesses significantly better spectral resolution than the fifth-and even seventh-order WENO-Z(weighted essentially non-oscillatory)schemes over the entire wave-number range.Moreover,the inherent low-pass filtering property of the wavelet bases allows them to filter high-frequency numerical oscillations,endowing the wavelet upwind scheme with robustness and accuracy in solving problems under extreme conditions.Notably,due to the wavelet multiresolution approximation,the proposed scheme possesses a distinctive shape-preserving property absent in the WENO-Z schemes and the fifth-order schemes with BVD reconstruction based on polynomials.Furthermore,compared to the fifth-order scheme with BVD reconstruction based on polynomials—which is significantly superior to the WENO schemes—the proposed scheme further enhances the ability to capture discontinuities.展开更多
基金supported by the Henan Province Key R&D Project under Grant 241111210400the Henan Provincial Science and Technology Research Project under Grants 252102211047,252102211062,252102211055 and 232102210069+2 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474,the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126。
文摘Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.
基金supported by the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(Grant No.2023C02018)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002)+2 种基金National Natural Science Foundation of China(Grant No.42371385)Funds of the Natural Science Foundation of Hangzhou(Grant No.2024SZRYBD010001)Nanxun Scholars Program of ZJWEU(Grant No.RC2022010755).
文摘Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
文摘In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.
文摘A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes.
基金supported by the researcher supporting Project number(RSPD2025R636),King Saud University,Riyadh,Saudi Arabia.
文摘Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content.Image watermarking can also be used to verify the authenticity of digital media,such as images or videos,by ascertaining the watermark information.In this paper,a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform(DWT),chaotic map,and Laplacian operator.The DWT can be used to decompose the image into its frequency components,chaos is used to provide extra security defense by encrypting the watermark signal,and the Laplacian operator with optimization is applied to the mid-frequency bands to find the sharp areas in the image.These mid-frequency bands are used to embed the watermarks by modifying the coefficients in these bands.The mid-sub-band maintains the invisible property of the watermark,and chaos combined with the second-order derivative Laplacian is vulnerable to attacks.Comprehensive experiments demonstrate that this approach is effective for common signal processing attacks,i.e.,compression,noise addition,and filtering.Moreover,this approach also maintains image quality through peak signal-to-noise ratio(PSNR)and structural similarity index metrics(SSIM).The highest achieved PSNR and SSIM values are 55.4 dB and 1.In the same way,normalized correlation(NC)values are almost 10%–20%higher than comparative research.These results support assistance in copyright protection in multimedia content.
文摘Predicting the currency exchange rate is crucial for financial agents,risk managers,and policymakers.Traditional approaches use publicly announced news on macroeconomic and financial variables as predictors of currency exchange.However,the rise of social media may have changed the source of information.For instance,tweets can help investors make informed decisions about the foreign exchange(FX)market by reflecting market sentiment and opinion.From another aspect,changes in currency exchange may incite agents to post tweets.Are tweets good predictors of currency exchange?Is the relationship between tweets and currency exchange bidirectional?We investigate the comovement/causality between the number of#dolar(“enflasyon”resp.)tweets and USDTRY currency exchange using wavelet coherence and transfer entropy(TE)to answer these questions.Wavelet coherence allows us to determine the relationship between the number of tweets and the USDTRY rate by considering the time–frequency domain.TE enables us to quantify the net information flow between the number of tweets and USDTRY.Data from October 2020 to March 2022 were used.The obtained results remain robust regardless of the frequency of retained data(daily or hourly)and the methods used(wavelet or TE).Based on our results,USDTRY is correlated with the number of#dolar tweets(#inflation)mainly in the short run and a few times in the medium run.These relationships change through time and frequency(wavelet analysis results).However,the results from TE indicate a bidirectional relationship between the#dolar(#inflation)tweets number and the USDTRY exchange rate.The influence of the exchange rate on the number of tweets is highly pronounced.Financial agents,risk managers,policymakers,and investors should then pay moderate attention to the number of#dolar(#inflation)tweets in trading/forecasting the USD–TRY exchange rate.
基金National Natural Science Foundation of China(No.62176052)。
文摘In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the capacity of ViT to capture global features,it compromises the preservation of fine-grained local feature information.To address these challenges,we propose a spatial positional enhancement module and a wavelet transform enhancement module tailored for ViT models.These modules aim to reduce spatial positional information loss during the patch embedding process and enhance the model’s feature extraction capabilities.The spatial positional enhancement module reinforces spatial information in sequential data through convolutional operations and multi-scale feature extraction.Meanwhile,the wavelet transform enhancement module utilizes the multi-scale analysis and frequency decomposition to improve the ViT’s understanding of global and local image structures.This enhancement also improves the ViT’s ability to process complex structures and intricate image details.Experiments on CIFAR-10,CIFAR-100 and ImageNet-1k datasets are done to compare the proposed method with advanced classification methods.The results show that the proposed model achieves a higher classification accuracy,confirming its effectiveness and competitive advantage.
基金funded by the National Key R&D Program of China(Grant No.2022YFC3300705)the National Natural Science Foundation of China(Grant Nos.62203056,12202048,and 62201056).
文摘Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C1011817)the BK21 Program(Next Generation Education Program for Mathematical Sciences,4299990414089)funded by the Ministry of Education(MOE,Republic of Korea).
文摘In recent years,variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability tomodel complex physical phenomena withmemory and spatial heterogeneity.However,existing numerical methods often struggle with the computational challenges posed by such equations,especially in nonlinear,multi-term formulations.This study introduces two hybrid numerical methods—the Linear-Sine and Cosine(L1-CAS)and fast-CAS schemes—for solving linear and nonlinear multi-term Caputo variable-order(CVO)fractional partial differential equations.These methods combine CAS wavelet-based spatial discretization with L1 and fast algorithms in the time domain.A key feature of the approach is its ability to efficiently handle fully coupled spacetime variable-order derivatives and nonlinearities through a second-order interpolation technique.In addition,we derive CAS wavelet operational matrices for variable-order integration and for boundary value problems,forming the foundation of the spatial discretization.Numerical experiments confirm the accuracy,stability,and computational efficiency of the proposed methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094)。
文摘Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.
基金supported by the Technology Innovation Program(20023566,‘Development and Demonstration of Industrial IoT and AI-Based Process Facility Intelligence Support System in Small and Medium Manufacturing Sites’)funded by the Ministry of Trade,Industry,&Energy(MOTIE,Republic of Korea).
文摘Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.
文摘This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks.
文摘In this paper,we used higher order Haar wavelet method(HOHWM),introduced by Majak et al.[1],for approximate solution of second order integro-diferential equations(IDEs)of second-kind.It is improvement of long-established Haar wavelet collocation method(HWCM)which has been much popular among researchers and has many applications in literature.Present study aims to improve the numerical results of second order IDEs from first order rate of convergence in case of HWCM to the second and fourth order rate of convergence using HOHWM,depending on parameterλfor values 1 and 2,respectively.Several problems available in the literature of both,Volterra and Fredholm type of IDEs,are tested and compared with HWCM to illustrate the performance of our proposed method.
基金supported by the Key Laboratory of Marine Mineral Resources,Ministry of Natural and Resources,Guangzhou(No.KLMMR-20220K02)the Marine Geological Survey Program of China Geological Survey(No.DD20191003)。
文摘Plasma spark sources are widely used in high-resolution seismic exploration.However,research on the excitation mechanism and propagation characteristics of plasma spark sources is very limited.In this study,we elaborated on the excitation process of corona discharge plasma spark source based on indoor experimental data.The electrode spacing has a direct impact on the movement of bubbles.As the spacing between bubbles decreases,they collapsed and fused,thereby suppressing the secondary pulse process.Based on the premise of linear arrangement and equal energy synchronous excitation,the motion equation of multiple bubbles under these conditions was derived,and a calculation method for the near-field wavelet model of plasma spark source was established.We simulated the source signals received in different directions and constructed a spatial wavelet face spectrum.Compared with traditional far-field wavelets,the spatial wavelet facial feature representation method provides a more comprehensive display of the variation characteristics and propagation properties of source wavelets in three-dimensional space.The spatial wavelet variation process of the plasma spark source was analyzed,and the source depth and the virtual reflection path are the main factors affecting the wavelet.The high-frequency properties of plasma electric spark source wavelets lead to their sensitivity to factors such as wave fluctuations,position changes,and environmental noise.Minor changes in collection parameters may result in significant changes in the recorded waveform and final data resolution.So,the facial feature method provides more effective technical support for wavelet evaluation.
基金2023 Liaoning Institute of Science and Technology Doctoral Program Launch fund(No.2307B29).
文摘A clock bias data processing method based on interval correlation coefficient wavelet threshold denoising is suggested for minor mistakes in clock bias data in order to increase the efficacy of satellite clock bias prediction.Wavelet analysis was first used to break down the satellite clock frequency data into several levels,producing high and low frequency coefficients for each layer.The correlation coefficients of the high and low frequency coefficients in each of the three sub-intervals created by splitting these coefficients were then determined.The major noise region—the sub-interval with the lowest correlation coefficient—was chosen for thresholding treatment and noise threshold computation.The clock frequency data was then processed using wavelet reconstruction and reconverted to clock data.Lastly,three different kinds of satellite clock data—RTS,whu-o,and IGS-F—were used to confirm the produced data.Our method enhanced the stability of the Quadratic Polynomial(QP)model’s predictions for the C16 satellite by about 40%,according to the results.The accuracy and stability of the Auto Regression Integrated Moving Average(ARIMA)model improved up to 41.8%and 14.2%,respectively,whilst the Wavelet Neural Network(WNN)model improved by roughly 27.8%and 63.6%,respectively.Although our method has little effect on forecasting IGS-F series satellites,the experimental findings show that it can improve the accuracy and stability of QP,ARIMA,and WNN model forecasts for RTS and whu-o satellite clock bias.
文摘A wavelet-based local and global feature fusion network(LAGN)is proposed for low-light image enhancement,aiming to enhance image details and restore colors in dark areas.This study focuses on addressing three key issues in low-light image enhancement:Enhancing low-light images using LAGN to preserve image details and colors;extracting image edge information via wavelet transform to enhance image details;and extracting local and global features of images through convolutional neural networks and Transformer to improve image contrast.Comparisons with state-of-the-art methods on two datasets verify that LAGN achieves the best performance in terms of details,brightness,and contrast.
基金the National Natural Science Foundation of China(No.62065001)the Yunnan Young and Middle-aged Academic and Technical Leaders Reserve Talent Project(No.202205AC160001)+1 种基金the Science and Technology Programs of Yunnan Provincial Science and Technology Department(No.202101BA070001-054)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities Association(No.2019FH001(-066))。
文摘Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.
基金supported by the National Natural Science Foundation of China(Grant No.11925204).
文摘In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interface capturing(THINC)technique.We employ boundary variation diminishing(BVD)reconstruction to enhance the scheme’s effectiveness in handling shocks.First,we prove that wavelet collocation upwind schemes based on interpolating wavelets can be reformulated into a conservative form within the framework of wavelet theory,forming the foundation of the proposed scheme.The new fourthorder accurate scheme possesses significantly better spectral resolution than the fifth-and even seventh-order WENO-Z(weighted essentially non-oscillatory)schemes over the entire wave-number range.Moreover,the inherent low-pass filtering property of the wavelet bases allows them to filter high-frequency numerical oscillations,endowing the wavelet upwind scheme with robustness and accuracy in solving problems under extreme conditions.Notably,due to the wavelet multiresolution approximation,the proposed scheme possesses a distinctive shape-preserving property absent in the WENO-Z schemes and the fifth-order schemes with BVD reconstruction based on polynomials.Furthermore,compared to the fifth-order scheme with BVD reconstruction based on polynomials—which is significantly superior to the WENO schemes—the proposed scheme further enhances the ability to capture discontinuities.