期刊文献+
共找到1,465篇文章
< 1 2 74 >
每页显示 20 50 100
Stationary and Non-stationary Self-Induced Vibrations in Waveguiding Systems
1
作者 Valery Gulyayev Olga Glushakova Sergey Glazunov 《Journal of Mechanics Engineering and Automation》 2014年第3期213-224,共12页
With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods fo... With the use of a wave model, the non-linear problem about realization of the Poincare-Hopf bifurcations in waveguiding systems is stated. The constitutive non-linear differential equations are deduced, the methods for their solution are elaborated. The example of torsion wave propagation in an elongated drill string is considered. Computer simulation of auto-oscillation generation in the examined system is performed for the cases of stationary and non-stationary variations of the perturbation parameter. The diapason of the drilling rotation velocity values corresponding to regimes of stable self-excited periodic motions of the system is found. This domain is shown to be limited by the states of the Poincare-Hopf bifurcations. Owing to the feature that the stated problem is singularly perturbed, the autovibrations are of relaxation type with fast and slow motions. Influence of the length of the uniform and articulated drill strings on the bifurcation values of their angular velocities of generation and accomplishment of the auto-oscillation processes in the drill strings is discussed. 展开更多
关键词 waveguiding systems singularly perturbed problem self-induced vibrations Hopf's bifurcation relaxation vibrations.
在线阅读 下载PDF
Metallic nanowires for subwavelength waveguiding and nanophotonic devices 被引量:1
2
作者 潘登 魏红 徐红星 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期72-83,共12页
Plasmonics is a rapidly developing field concerning light manipulation at the nanoscale with many potential applica- tions, of which plasmonic circuits are promising for future information technology. Plasmonic wavegu... Plasmonics is a rapidly developing field concerning light manipulation at the nanoscale with many potential applica- tions, of which plasmonic circuits are promising for future information technology. Plasmonic waveguides are fundamental elements for constructing plasmonic integrated circuits. Among the proposed different plasmonic waveguides, metallic nanowires have drawn much attention due to the highly confined electromagnetic waves and relatively low propagation loss. Here we review the recent research progress in the waveguiding characteristics of metallic nanowires and nanowire-based nanophotonic devices. Plasmon modes of both cylindrical and pentagonal metallic nanowires with and without substrate are discussed. Typical methods for exciting and detecting the plasmons in metallic nanowires are briefly summarized. Be- cause of the multimode characteristic, the plasmon propagation and emission in the nanowire have many unique properties, benefiting the design of plasmonic devices. A few nanowire-based devices are highlighted, including quarter-wave plate, Fabry-Pdrot resonator, router and logic gates. 展开更多
关键词 surface plasmons WAVEGUIDE CIRCUIT NANOWIRE
原文传递
Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons 被引量:1
3
作者 ZHEN LIAO GUO QING LUO +2 位作者 BEN GENG CAI BAI CAO PAN WEN HUI CAO 《Photonics Research》 SCIE EI CSCD 2019年第3期274-282,共9页
Magnetic localized surface plasmon modes are supported on metallic spiral structures. Coupling mechanisms for these metamaterial resonators, which are the joint action of magnetic and electric coupling, are studied. B... Magnetic localized surface plasmon modes are supported on metallic spiral structures. Coupling mechanisms for these metamaterial resonators, which are the joint action of magnetic and electric coupling, are studied. Based on the strong coupling, spoof magnetic plasmon modes propagating in the backward direction are proposed along a chain of subwavelength resonators. The theoretical analysis, numerical simulations, and experiments are in good agreement. The proposed novel route for achieving negative-index waveguiding has potential applications in integrated devices and circuits. 展开更多
关键词 SUBWAVELENGTH NEGATIVE-INDEX waveguiding COUPLED spoof MAGNETIC LOCALIZED SURFACE plasmons MAGNETIC LOCALIZED SURFACE plasmon modes
原文传递
Structural design of a wide-ridge mid-wave infrared quantum cascade laser based on a supersymmetric waveguide
4
作者 DU Shu-Hao ZHENG Xian-Tong +7 位作者 JIA Han CUI Jin-Tao ZHANG Shi-Ya LIU Yuan FENG Yu-Lin ZHANG Chun-Qian LIU Ming ZHANG Dong-Liang 《红外与毫米波学报》 北大核心 2025年第3期452-458,共7页
In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particul... In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance. 展开更多
关键词 quantum cascade laser mode competition SUPERSYMMETRY MID-INFRARED auxiliary waveguides
在线阅读 下载PDF
W-band folded-waveguide traveling-wave tube with dual electron beams and H-plane power combining
5
作者 Wang Huanyu Duan Jingrui +5 位作者 Wang Zhanliang Tang Haichen Lu Zhigang Wang Shaomeng Gong Huarong Gong Yubin 《强激光与粒子束》 北大核心 2025年第12期19-25,共7页
[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,... [Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs. 展开更多
关键词 double electron beam folded waveguide slow-wave structure power combining beam-wave interaction W-BAND
在线阅读 下载PDF
Efficient multi-millijoule THz wave generation from laser interactions with a cylindrical GaAs waveguide
6
作者 Zahra Ghanavati Hamid Reza Zangeneh 《红外与毫米波学报》 北大核心 2025年第4期586-593,共8页
This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conv... This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conversion of laser energy into THz waves.Through meticulous investigation,valuable insights into optimizing THz generation processes for practical applications were unearthed.By investigating Hertz potentials,an eigen-value equation for the solutions of the guided modes(i.e.,eigenvalues)was found.The effects of various param-eters,including the effective mode index and the laser pulse power,on the electric field components of THz radia-tion,including the fundamental TE(transverse electric)and TM(transverse magnetic)modes,were evaluated.By analyzing these factors,this research elucidated the nuanced mechanisms governing THz wave generation within cylindrical GaAs waveguides,paving the way for refined methodologies and enhanced efficiency.The sig-nificance of cylindrical GaAs waveguides extends beyond their roles as mere facilitators of THz generation;their design and fabrication hold the key to unlocking the potential for compact and portable THz systems.This trans-formative capability not only amplifies the efficiency of THz generation but also broadens the horizons of practical applications. 展开更多
关键词 terahertz waves cylindrical waveguides gallium arsenide(GaAs)matter nonlinear optical processes multi-millijoule THz pulses
在线阅读 下载PDF
Design and fabrication of LWDM AWG for data centers with rates above 1.6 Tbps
7
作者 HUANG Song CUI Peng-Wei +9 位作者 WANG Yue WANG Liang-Liang ZHANG Jia-Shun MA Jun-Chi ZHANG Chun-Xue GUO Li-Yong YANG Han-Ming WU Yuan-Da AN Jun-Ming SONG Ze-Guo 《红外与毫米波学报》 北大核心 2025年第3期406-412,共7页
A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocatio... A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps. 展开更多
关键词 local area network wavelength division multiplexing(LWDM) arrayed waveguide grating(AWG) O-band SILICA planar lightwave circuit(PLC)
在线阅读 下载PDF
A triple-band miniaturized end-fire antenna based on odd-mode spoof surface plasmonic polariton waveguide resonator
8
作者 BAI Yukun MAO Mengqun 《Optoelectronics Letters》 2025年第8期462-467,共6页
A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication chan... A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication channels and less antenna sizes,multi-band antennas are currently under intensive investigation.By a novel feeding method,three odd modes are excited on an SSPP waveguide resonator,which performs as an end-fire antenna operating at three bands,7.15-7.26 GHz,11.6-12.2 GHz and 13.5-13.64 GHz.It exhibits reasonably high and stable maximum gains of 5.26 dBi,7.97 dBi and 10.1 dBi and maximum efficiencies of 64%,92%and 98%at the three bands,respectively.Moreover,in the second band,the main beam angle shows a frequency dependence with a total scanning angle of 19°.The miniaturized triple-band antenna has a great potential in wireless communication systems,satellite communication and radar systems. 展开更多
关键词 odd modes waveguide resonatorwhich triple band antenna end fire antenna feeding methodthree spoof surface plasmonic polariton sspp waveguide communication channels miniaturized antenna
原文传递
Wave Propagation Patterns Associated with Summer Extreme Precipitation Events in South Siberia and Mongolia
9
作者 Olga ANTOKHINA Pavel ANTOKHIN +1 位作者 Alexander GOCHAKOV Olga ZORKALTSEVA 《Advances in Atmospheric Sciences》 2025年第10期2125-2141,共17页
The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagatio... The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagation patterns for two periods:1982-98 and 1999-2019.Our analysis revealed distinct wave train configurations and geopotential anomalies preceding EPEs,with an increase in wave activity flux across the Northern Hemisphere,followed by a subsequent decrease during EPEs.Consequently,Eastern Siberia has experienced a significant rise in wave activity.Based on geopotential anomalies over Central Siberia accompanying EPEs,we identified two main types.The first,the ridge type,is predominant during the first period and features a meridional contrast with a positive geopotential(and temperature)anomaly over Central Siberia and a negative anomaly over the subtropical regions along the same longitude.The second type,termed the trough type,is more typical for the second period.It involves either a negative geopotential anomaly or the zonal proximity of positive and negative geopotential anomalies over Central Siberia.The trough type,marked by zonally oriented anomalies in geopotential and temperature,results in a more pronounced temperature decrease before EPEs and significant zonal temperature contrasts.Further,it is related to more stationary waves over Northern Eurasia,with persistent positive geopotential anomalies over Europe linked to quasi-stationary troughs over Central Siberia and positive anomalies east of Lake Baikal.Our findings align with shifts in boreal summer teleconnection patterns,reflecting significant changes in wave propagation patterns that have occurred since the late 1990s. 展开更多
关键词 extreme precipitation events Siberia Mongolia wave propagation BLOCKING WAVEGUIDES
在线阅读 下载PDF
Sensing characteristics of feedback waveguide slot grating microring resonators
10
作者 ZHU Yanjie LIANG Longxue LIU Chunjuan 《Journal of Measurement Science and Instrumentation》 2025年第2期272-279,共8页
To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,u... To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,utilizing the reflection of the grating to achieve the electromagnetic-like induced transparency effect at different wavelengths.The high slope characteristics of the EIT-like effect enabled a higher quality factor and sensitivity.The transmission principle of the structure was analyzed using the transmission matrix method,and the transmission spectrum and mode field distribution were simulated using the finite-difference time-domain(FDTD)method,and the device structure parameters were adjusted for optimization.Simulation results show that the proposed structure achieves an EIT-like effect with a quality factor of 59267.5.In the analysis of refractive index sensing characteristics,the structure exhibits a sensitivity of 408.57 nm/RIU and a detection limit of 6.23×10^(-5) RIU.Therefore,the proposed structure achieved both a high quality factor and refractive index sensitivity,demonstrating excellent sensing performance for applications in environmental monitoring,biomedical fields,and other areas with broad market potential. 展开更多
关键词 integrated optics micro-ring resonator slot micro-ring GRATING refractive index sensor silicon waveguide
在线阅读 下载PDF
Acoustic emission behavior generated from active waveguide during shearing process
11
作者 Yang Chen Hongyong Yuan +4 位作者 Lizheng Deng Rui Pan Jianguo Chen Lida Huang Mingzhi Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6571-6585,共15页
Compared to existing deformation monitoring methods,landslide early warning can be achieved by detecting precursor signals of slope instability through acoustic emission(AE).Acquisition of AE signals generated by acti... Compared to existing deformation monitoring methods,landslide early warning can be achieved by detecting precursor signals of slope instability through acoustic emission(AE).Acquisition of AE signals generated by active waveguide facilitates monitoring the development of shear surface and provides a foundation for quantifying landslide movement.Backfill particles are the dominant AE sources in active waveguides,typically chosen from materials such as gravels or sands.However,the influence of particle sizes and gradings has not been clarified in existing laboratory models or field monitoring.This research introduces a direct shear test for active waveguide,where spherical glass beads are employed to precisely regulate the size and grading of backfill particles.A programmable logic controller maintains a constant shearing speed and equivalent total deformation.Through a comprehensive analysis of AE,deformation,and mechanical measurements,this study evaluates the impact of particle size and grading on monitoring capabilities.The findings suggest that the AE mechanism in glass beads is attributed to particle collision and dislocation,leading to AE events characterized by low amplitude and energy levels.The percentage of high-amplitude AE events rises steadily with the progression of shearing.The correlation between shear force,cumulative ring down count(RDC)of AE,and deformation conforms to a power function,with the exponent relying on particle size,grading,and shearing speed.Notably,the combination of small particles and low shearing speeds can yield the maximum cumulative RDC,while selecting particles with uneven grading will significantly enhance the intensity of AE signals from active waveguide. 展开更多
关键词 Landslide monitoring Active waveguide Acoustic emission Direct shear test Particle property
在线阅读 下载PDF
Supercontinuum generation using long-period-grating waveguides on silicon
12
作者 Hongzhi Xiong Xinmin Yao +7 位作者 Qingrui Yao Qingbo Wu Hongyuan Cao Yaoxin Bao Fei Huang Zejie Yu Ming Zhang Daoxin Dai 《Advanced Photonics Nexus》 2025年第1期138-144,共7页
Research on supercontinuum sources on silicon has made significant progress in the past few decades.However,conventional approaches to broaden the spectral bandwidth often rely on complex and critical dispersion engin... Research on supercontinuum sources on silicon has made significant progress in the past few decades.However,conventional approaches to broaden the spectral bandwidth often rely on complex and critical dispersion engineering by optimizing the core thickness or introducing the cladding with special materials and structures.We propose and demonstrate supercontinuum generation using long-periodgrating(LPG)waveguides on silicon with a C-band pump.The LPG waveguide is introduced for quasi-phase matching,and the generated supercontinuum spectrum is improved greatly with grating-induced dispersive waves.In addition,the demonstrated LPG waveguide shows a low propagation loss comparable with regular silicon photonic waveguides without gratings.In experiments,when using a 1550-nm 75-fs pulse pump with a pulse energy of 200 pJ,the supercontinuum spectrum generated with the present LPG waveguide shows an ultrabroad extent from 1150 to 2300 nm,which is much wider by 200 nm than that achieved by dispersionengineered uniform silicon photonic waveguides on the same chip.This provides a promising option for on-chip broadband light source for silicon photonic systems. 展开更多
关键词 silicon photonics supercontinuum generation nonlinear optics waveguide grating.
在线阅读 下载PDF
Compact planar-waveguide integrated diffractive optical neural network chip
13
作者 Jianan Feng Chang Li +7 位作者 Dahai Yang Yang Liu Jianyang Hu Chen Chen Yiqun Wang Jie Lin Lei Wang Peng Jin 《Advanced Photonics Nexus》 2025年第1期93-104,共12页
Diffractive optical neural networks(DONNs)have exhibited the advantages of parallelization,high speed,and low consumption.However,the existing DONNs based on free-space diffractive optical elements are bulky and unste... Diffractive optical neural networks(DONNs)have exhibited the advantages of parallelization,high speed,and low consumption.However,the existing DONNs based on free-space diffractive optical elements are bulky and unsteady.In this study,we propose a planar-waveguide integrated diffractive neural network chip architecture.The three diffractive layers are engraved on the same side of a quartz wafer.The three-layer chip is designed with 32-mm3 processing space and enables a computing speed of 3.1×109 Tera operations per second.The results show that the proposed chip achieves 73.4%experimental accuracy for the Modified National Institute of Standards and Technology database while showing the system’s robustness in a cycle test.The consistency of experiments is 88.6%,and the arithmetic mean standard deviation of the results is~4.7%.The proposed chip architecture can potentially revolutionize high-resolution optical processing tasks with high robustness. 展开更多
关键词 optical computing diffractive neural network planar waveguide high robustness.
在线阅读 下载PDF
Design of self-diplexing and quadruplexing Substrate Integrated Waveguide(SIW)antennas for C-and X-band high-speed wireless applications
14
作者 Bhim Sain Singla Ashish Kumar Ahmed J.A.Al-Gburi 《High-Speed Railway》 2025年第3期205-214,共10页
Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing ... Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing and quadruplexing Substrate-Integrated Waveguide (SIW) cavities. The diplexing structure incorporates two V-shaped slots, while the quadruplexing structure advances this concept by combining the slots to form a cross-shaped configuration within the cavity. The widths and lengths of the slots are carefully tuned to achieve variations in the respective operating frequencies without affecting the others. The proposed diplexing antenna resonates at 8.48 and 9.2 GHz, with a frequency ratio of 1.08, while the quadruplexing antenna operates at 6.9, 7.1, 7.48, and 8.2GHz. Both designs exhibit isolation levels well below –20dB and achieve a simulated peak gain of 5.6 dBi at the highest frequency, with a compact cavity area of 0.56 λg^(2). The proposed antennas operate within the NR bands (n12, n18, n26), making them suitable for modern high-speed wireless communication systems. Moreover, the properties like multiband operation, compactness, high isolation, low loss, and low interference make the antenna favorable for the high-speed railway communication systems. 展开更多
关键词 Subtrate Integrated Waveguide(SIW) Multiplexing antenna High-speed isolation GAIN Multiple frequencies Frequency ratio
在线阅读 下载PDF
Quantum manipulation of asymmetric Einstein–Podolsky–Rosen steering in controllable dynamical Casimir arrays
15
作者 Ruinian Li Yumei Long Xue Zhang 《Chinese Physics B》 2025年第2期149-163,共15页
We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an a... We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an asymmetry in its structure,which is caused by the differences in the sizes and the coupling positions of the giant atoms.The system achieves different types of EPR steering and the reversal of one-way EPR steering by modulating parameters.Furthermore,the symmetry and asymmetry of the system structure,in their responses to parameter modulation,both reveal the asymmetry of EPR steering.In this process,we discover that with the increase in temperature,different types of steering can be transferred from Casimir photons to giant atoms.We also achieve the monogamy of the multipartite system.These results provide important assistance for secure quantum communication,and further intuitively validating the asymmetry of EPR steering from multiple perspectives. 展开更多
关键词 dynamical Casimir effect EPR steering monogamy relation giant atoms coupled resonator waveguides
原文传递
Polarimetric thermoacoustic imaging
16
作者 Jiawei Long Zheng Liang +3 位作者 Yihang Tu Shimeng Xie Lin Huang En Li 《Journal of Innovative Optical Health Sciences》 2025年第2期69-75,共7页
Thermoacoustic imaging(TAI)contrast comes from different electrical properties(EPs)of microwave absorption.However,the relationship between the permittivity distribution and the electric field polarization limits the ... Thermoacoustic imaging(TAI)contrast comes from different electrical properties(EPs)of microwave absorption.However,the relationship between the permittivity distribution and the electric field polarization limits the application of TAI in some extent.Here,we present a polarimetric thermoacoustic imaging(pTAI)system based on a rotary waveguide.By optimizing a rotary waveguide(insertion loss<0.2dB,return loss>15dB at 3GHz),the excitation wave emitted from a horn antenna can rotate freely in the direction of polarization.The multi-polarization pulsed microwave signal is used to evoke the thermoacoustic signals(TAS)of samples in different polarimetric directions.The simulation for pTAI with a multi-directional sample is first obtained.Then,we rotated the rotary waveguide at 10°/s and experimentally demonstrated the performance of pTAI by imaging three randomly placed soy sauce tubes and ex vivo beef.This study suggests that pTAI has potential for dielectric properties“diffusion”mapping,for example,provides conductivity tensor mapping of brain and muscle. 展开更多
关键词 Polarimetric imaging thermoacoustic imaging rotary waveguide
原文传递
Experimental demonstration of silicon nitride waveguide gratings with excellent efficiency and divergence angle
17
作者 Zhaozhen Chen Wenling Li +4 位作者 Qian Wang Enfeng Liu Xinqun Zhang Jingwei Liu Zhengsheng Han 《Chinese Physics B》 2025年第5期431-435,共5页
Silicon nitride(Si_(3)N_(4))photonic platform has recently attracted increasing attention for Si_(3)N_(4) photonic integrated circuits(PIC).A diffraction grating with the only etched top-layer in tri-layer Si3N4 optic... Silicon nitride(Si_(3)N_(4))photonic platform has recently attracted increasing attention for Si_(3)N_(4) photonic integrated circuits(PIC).A diffraction grating with the only etched top-layer in tri-layer Si3N4 optical waveguides is proposed,which shows a simple fabrication process,high upward diffraction efficiency,and lower far-field divergence angle.The measured results of the diffraction grating at a wavelength of 905 nm show the average upward diffraction efficiency of 90.5% and average far-field divergence angle of 0.154°,which shows a good agreement with the design results with the upward diffraction efficiency of 91.6%and far-field divergence angle of 0.105°. 展开更多
关键词 silicon nitride photonic platform optical waveguides
原文传递
Design and optimization of the RGB beam combiner in micro display using entropy weight-TOPSIS method
18
作者 ZHENG Yu ZHAO Yan-bing +4 位作者 ZOU Xin-jie WANG Ji-rong JIANG Xiang LIU Jian-zhe DUAN Ji-an 《Journal of Central South University》 2025年第2期483-494,共12页
Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens... Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm. 展开更多
关键词 optical waveguide combiners red-green-blue beam combiner beam propagation method entropy weight TOPSIS method multiplexing efficiency
在线阅读 下载PDF
Guiding and magneto–optical properties of TGG waveguide by proton implantation combined with femtosecond laser ablation
19
作者 Chun-Xiao Liu Zi-Hao Wang +6 位作者 Bei-Er Guo Rui Yuan Yi-Fan Wang Yu-Hang Zhou Jia-Bin Sun Liao-Lin Zhang Hai-Tao Guo 《Chinese Physics B》 2025年第5期437-442,共6页
Integrating the magneto-optical effect into a waveguide-based photonic device becomes more and more interesting.In the work,the planar optical waveguide firstly was prepared in a terbium gallium garnet crystal(TGG)via... Integrating the magneto-optical effect into a waveguide-based photonic device becomes more and more interesting.In the work,the planar optical waveguide firstly was prepared in a terbium gallium garnet crystal(TGG)via the proton implantation with the energy of 4×10^(-1)MeV and the fluence of 6×10^(8)ions/μm^(2).Subsequently,a femtosecond laser with a central wavelength of 800 nm and a power of 3 mW was used to ablate the surface of the planar waveguide,forming the ridge optical waveguide.The dark-mode curve of the planar waveguide was measured by a prism coupling technique.The top-view morphology of the ridge waveguide was observed via a Nikon microscope.The mode field distributions of the planar and ridge waveguides were obtained by an end-face coupling system,and the propagation losses of the two waveguides were measured to be 2.26 dB/cm and 2.58 dB/cm,respectively.The Verdet constants were measured to be-72.7°/T·cm for the TGG substrate and-60.7°/T·cm for the ridge waveguide.The TGG waveguides have a potential in the fabrication of magneto-optical waveguide devices. 展开更多
关键词 optical waveguide ion implantation terbium gallium garnet crystal(TGG) magneto-optical effect femtosecond laser ablation
原文传递
High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip
20
作者 Jinli Han Mengqi Li +7 位作者 Rongbo Wu Jianping Yu Lang Gao Zhiwei Fang Min Wang Youting Liang Haisu Zhang Ya Cheng 《Opto-Electronic Science》 2025年第9期1-10,共10页
Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithiu... Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithium niobate waveguide amplifier achieving>10 dB off-chip(fiber-to-fiber)net gain and>20 mW fiber-output amplified power is demonstrated,thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of-1.2 dB/facet.A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip,which generates>2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate(TFLN)waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with highspeed tunability. 展开更多
关键词 integrated photonics thin-film lithium niobate erbium doped waveguide amplifier
在线阅读 下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部