In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particul...In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance.展开更多
[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,...[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.展开更多
This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conv...This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conversion of laser energy into THz waves.Through meticulous investigation,valuable insights into optimizing THz generation processes for practical applications were unearthed.By investigating Hertz potentials,an eigen-value equation for the solutions of the guided modes(i.e.,eigenvalues)was found.The effects of various param-eters,including the effective mode index and the laser pulse power,on the electric field components of THz radia-tion,including the fundamental TE(transverse electric)and TM(transverse magnetic)modes,were evaluated.By analyzing these factors,this research elucidated the nuanced mechanisms governing THz wave generation within cylindrical GaAs waveguides,paving the way for refined methodologies and enhanced efficiency.The sig-nificance of cylindrical GaAs waveguides extends beyond their roles as mere facilitators of THz generation;their design and fabrication hold the key to unlocking the potential for compact and portable THz systems.This trans-formative capability not only amplifies the efficiency of THz generation but also broadens the horizons of practical applications.展开更多
A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refracti...A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications.展开更多
A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocatio...A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.展开更多
In this paper,a terahertz slotted waveguide array antenna is designed based on photonic crystal,which can realize efficient radiation of terahertz waves.The electromagnetic wave is fed from the rectangular waveguide a...In this paper,a terahertz slotted waveguide array antenna is designed based on photonic crystal,which can realize efficient radiation of terahertz waves.The electromagnetic wave is fed from the rectangular waveguide at the bottom of the antenna,coupled to photonic crystal waveguide through photonic crystal cavity,and radiated outward through slots at the top layer of antenna.The simulation results show that the antenna achieves a peak gain of 13.45 dBi at 360 GHz,a half-power beam width of 10.9°,and a side lobe level of−13.9 dB.The antenna based on photonic crystal has the advantages of low profile,low loss,and high radiation efficiency,which can be applied to terahertz wireless communication systems.展开更多
Ferrimagnetic materials exhibiting remanence can be used to achieve unidirectional electromagnetic-field propagation in the form of magnetoplasmons(MPs)in the subwavelength regime.This study investigates the MP proper...Ferrimagnetic materials exhibiting remanence can be used to achieve unidirectional electromagnetic-field propagation in the form of magnetoplasmons(MPs)in the subwavelength regime.This study investigates the MP properties and various guiding modes in a hollow cylindrical waveguide made of materials that exhibit remanence.Pattern analysis and numerical simulations are used to demonstrate that dispersion relationships and electromagnetic-field distribution are strongly affected by the operating frequency and physical dimensions of the structure.In addition,the existence of two different guiding modes is proved,namely regular and surface-wave modes.By adjusting the operating frequency and reducing the diameter of the hollow cylinder,the regular mode can be suppressed so as to only retain the surface-wave mode,which enables unidirectional MP propagation in the cylindrical waveguide.Moreover,the unidirectional surface-wave mode is robust to backscattering due to surface roughness and defects,which makes it very useful for application in field-enhancement devices.展开更多
A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication chan...A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication channels and less antenna sizes,multi-band antennas are currently under intensive investigation.By a novel feeding method,three odd modes are excited on an SSPP waveguide resonator,which performs as an end-fire antenna operating at three bands,7.15-7.26 GHz,11.6-12.2 GHz and 13.5-13.64 GHz.It exhibits reasonably high and stable maximum gains of 5.26 dBi,7.97 dBi and 10.1 dBi and maximum efficiencies of 64%,92%and 98%at the three bands,respectively.Moreover,in the second band,the main beam angle shows a frequency dependence with a total scanning angle of 19°.The miniaturized triple-band antenna has a great potential in wireless communication systems,satellite communication and radar systems.展开更多
The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagatio...The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagation patterns for two periods:1982-98 and 1999-2019.Our analysis revealed distinct wave train configurations and geopotential anomalies preceding EPEs,with an increase in wave activity flux across the Northern Hemisphere,followed by a subsequent decrease during EPEs.Consequently,Eastern Siberia has experienced a significant rise in wave activity.Based on geopotential anomalies over Central Siberia accompanying EPEs,we identified two main types.The first,the ridge type,is predominant during the first period and features a meridional contrast with a positive geopotential(and temperature)anomaly over Central Siberia and a negative anomaly over the subtropical regions along the same longitude.The second type,termed the trough type,is more typical for the second period.It involves either a negative geopotential anomaly or the zonal proximity of positive and negative geopotential anomalies over Central Siberia.The trough type,marked by zonally oriented anomalies in geopotential and temperature,results in a more pronounced temperature decrease before EPEs and significant zonal temperature contrasts.Further,it is related to more stationary waves over Northern Eurasia,with persistent positive geopotential anomalies over Europe linked to quasi-stationary troughs over Central Siberia and positive anomalies east of Lake Baikal.Our findings align with shifts in boreal summer teleconnection patterns,reflecting significant changes in wave propagation patterns that have occurred since the late 1990s.展开更多
To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,u...To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,utilizing the reflection of the grating to achieve the electromagnetic-like induced transparency effect at different wavelengths.The high slope characteristics of the EIT-like effect enabled a higher quality factor and sensitivity.The transmission principle of the structure was analyzed using the transmission matrix method,and the transmission spectrum and mode field distribution were simulated using the finite-difference time-domain(FDTD)method,and the device structure parameters were adjusted for optimization.Simulation results show that the proposed structure achieves an EIT-like effect with a quality factor of 59267.5.In the analysis of refractive index sensing characteristics,the structure exhibits a sensitivity of 408.57 nm/RIU and a detection limit of 6.23×10^(-5) RIU.Therefore,the proposed structure achieved both a high quality factor and refractive index sensitivity,demonstrating excellent sensing performance for applications in environmental monitoring,biomedical fields,and other areas with broad market potential.展开更多
Compared to existing deformation monitoring methods,landslide early warning can be achieved by detecting precursor signals of slope instability through acoustic emission(AE).Acquisition of AE signals generated by acti...Compared to existing deformation monitoring methods,landslide early warning can be achieved by detecting precursor signals of slope instability through acoustic emission(AE).Acquisition of AE signals generated by active waveguide facilitates monitoring the development of shear surface and provides a foundation for quantifying landslide movement.Backfill particles are the dominant AE sources in active waveguides,typically chosen from materials such as gravels or sands.However,the influence of particle sizes and gradings has not been clarified in existing laboratory models or field monitoring.This research introduces a direct shear test for active waveguide,where spherical glass beads are employed to precisely regulate the size and grading of backfill particles.A programmable logic controller maintains a constant shearing speed and equivalent total deformation.Through a comprehensive analysis of AE,deformation,and mechanical measurements,this study evaluates the impact of particle size and grading on monitoring capabilities.The findings suggest that the AE mechanism in glass beads is attributed to particle collision and dislocation,leading to AE events characterized by low amplitude and energy levels.The percentage of high-amplitude AE events rises steadily with the progression of shearing.The correlation between shear force,cumulative ring down count(RDC)of AE,and deformation conforms to a power function,with the exponent relying on particle size,grading,and shearing speed.Notably,the combination of small particles and low shearing speeds can yield the maximum cumulative RDC,while selecting particles with uneven grading will significantly enhance the intensity of AE signals from active waveguide.展开更多
Research on supercontinuum sources on silicon has made significant progress in the past few decades.However,conventional approaches to broaden the spectral bandwidth often rely on complex and critical dispersion engin...Research on supercontinuum sources on silicon has made significant progress in the past few decades.However,conventional approaches to broaden the spectral bandwidth often rely on complex and critical dispersion engineering by optimizing the core thickness or introducing the cladding with special materials and structures.We propose and demonstrate supercontinuum generation using long-periodgrating(LPG)waveguides on silicon with a C-band pump.The LPG waveguide is introduced for quasi-phase matching,and the generated supercontinuum spectrum is improved greatly with grating-induced dispersive waves.In addition,the demonstrated LPG waveguide shows a low propagation loss comparable with regular silicon photonic waveguides without gratings.In experiments,when using a 1550-nm 75-fs pulse pump with a pulse energy of 200 pJ,the supercontinuum spectrum generated with the present LPG waveguide shows an ultrabroad extent from 1150 to 2300 nm,which is much wider by 200 nm than that achieved by dispersionengineered uniform silicon photonic waveguides on the same chip.This provides a promising option for on-chip broadband light source for silicon photonic systems.展开更多
Diffractive optical neural networks(DONNs)have exhibited the advantages of parallelization,high speed,and low consumption.However,the existing DONNs based on free-space diffractive optical elements are bulky and unste...Diffractive optical neural networks(DONNs)have exhibited the advantages of parallelization,high speed,and low consumption.However,the existing DONNs based on free-space diffractive optical elements are bulky and unsteady.In this study,we propose a planar-waveguide integrated diffractive neural network chip architecture.The three diffractive layers are engraved on the same side of a quartz wafer.The three-layer chip is designed with 32-mm3 processing space and enables a computing speed of 3.1×109 Tera operations per second.The results show that the proposed chip achieves 73.4%experimental accuracy for the Modified National Institute of Standards and Technology database while showing the system’s robustness in a cycle test.The consistency of experiments is 88.6%,and the arithmetic mean standard deviation of the results is~4.7%.The proposed chip architecture can potentially revolutionize high-resolution optical processing tasks with high robustness.展开更多
Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing ...Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing and quadruplexing Substrate-Integrated Waveguide (SIW) cavities. The diplexing structure incorporates two V-shaped slots, while the quadruplexing structure advances this concept by combining the slots to form a cross-shaped configuration within the cavity. The widths and lengths of the slots are carefully tuned to achieve variations in the respective operating frequencies without affecting the others. The proposed diplexing antenna resonates at 8.48 and 9.2 GHz, with a frequency ratio of 1.08, while the quadruplexing antenna operates at 6.9, 7.1, 7.48, and 8.2GHz. Both designs exhibit isolation levels well below –20dB and achieve a simulated peak gain of 5.6 dBi at the highest frequency, with a compact cavity area of 0.56 λg^(2). The proposed antennas operate within the NR bands (n12, n18, n26), making them suitable for modern high-speed wireless communication systems. Moreover, the properties like multiband operation, compactness, high isolation, low loss, and low interference make the antenna favorable for the high-speed railway communication systems.展开更多
We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an a...We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an asymmetry in its structure,which is caused by the differences in the sizes and the coupling positions of the giant atoms.The system achieves different types of EPR steering and the reversal of one-way EPR steering by modulating parameters.Furthermore,the symmetry and asymmetry of the system structure,in their responses to parameter modulation,both reveal the asymmetry of EPR steering.In this process,we discover that with the increase in temperature,different types of steering can be transferred from Casimir photons to giant atoms.We also achieve the monogamy of the multipartite system.These results provide important assistance for secure quantum communication,and further intuitively validating the asymmetry of EPR steering from multiple perspectives.展开更多
Thermoacoustic imaging(TAI)contrast comes from different electrical properties(EPs)of microwave absorption.However,the relationship between the permittivity distribution and the electric field polarization limits the ...Thermoacoustic imaging(TAI)contrast comes from different electrical properties(EPs)of microwave absorption.However,the relationship between the permittivity distribution and the electric field polarization limits the application of TAI in some extent.Here,we present a polarimetric thermoacoustic imaging(pTAI)system based on a rotary waveguide.By optimizing a rotary waveguide(insertion loss<0.2dB,return loss>15dB at 3GHz),the excitation wave emitted from a horn antenna can rotate freely in the direction of polarization.The multi-polarization pulsed microwave signal is used to evoke the thermoacoustic signals(TAS)of samples in different polarimetric directions.The simulation for pTAI with a multi-directional sample is first obtained.Then,we rotated the rotary waveguide at 10°/s and experimentally demonstrated the performance of pTAI by imaging three randomly placed soy sauce tubes and ex vivo beef.This study suggests that pTAI has potential for dielectric properties“diffusion”mapping,for example,provides conductivity tensor mapping of brain and muscle.展开更多
Silicon nitride(Si_(3)N_(4))photonic platform has recently attracted increasing attention for Si_(3)N_(4) photonic integrated circuits(PIC).A diffraction grating with the only etched top-layer in tri-layer Si3N4 optic...Silicon nitride(Si_(3)N_(4))photonic platform has recently attracted increasing attention for Si_(3)N_(4) photonic integrated circuits(PIC).A diffraction grating with the only etched top-layer in tri-layer Si3N4 optical waveguides is proposed,which shows a simple fabrication process,high upward diffraction efficiency,and lower far-field divergence angle.The measured results of the diffraction grating at a wavelength of 905 nm show the average upward diffraction efficiency of 90.5% and average far-field divergence angle of 0.154°,which shows a good agreement with the design results with the upward diffraction efficiency of 91.6%and far-field divergence angle of 0.105°.展开更多
The phase-controlled single-photon transport properties of a giant atom coupled to a one-dimensional waveguide are investigated.The coupling between the giant atom and the waveguide is modeled as a multi-point interac...The phase-controlled single-photon transport properties of a giant atom coupled to a one-dimensional waveguide are investigated.The coupling between the giant atom and the waveguide is modeled as a multi-point interaction.The coupling strengths between the giant atom and the waveguide are represented as complex numbers with associated phases.Analytical expressions for the scattering amplitudes are obtained using the real-space Hamiltonian method.The results show that the characteristics of the scattering spectra,including the positions of peaks(or dips)and the full width at half maximum,can be tuned by adjusting the phase difference between the coupling strengths.Further calculations reveal that the scattering spectra can be either super-broadened or sub-broadened.The conditions for achieving perfect nonreciprocal single-photon transport in the Markovian regime are also discussed.Moreover,we demonstrate the control of single-photon transport through phase differences in the non-Markovian regime.Our results may find applications in the design of quantum devices operating at the single-photon level,based on waveguide quantum electrodynamics.展开更多
Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens...Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.展开更多
Integrating the magneto-optical effect into a waveguide-based photonic device becomes more and more interesting.In the work,the planar optical waveguide firstly was prepared in a terbium gallium garnet crystal(TGG)via...Integrating the magneto-optical effect into a waveguide-based photonic device becomes more and more interesting.In the work,the planar optical waveguide firstly was prepared in a terbium gallium garnet crystal(TGG)via the proton implantation with the energy of 4×10^(-1)MeV and the fluence of 6×10^(8)ions/μm^(2).Subsequently,a femtosecond laser with a central wavelength of 800 nm and a power of 3 mW was used to ablate the surface of the planar waveguide,forming the ridge optical waveguide.The dark-mode curve of the planar waveguide was measured by a prism coupling technique.The top-view morphology of the ridge waveguide was observed via a Nikon microscope.The mode field distributions of the planar and ridge waveguides were obtained by an end-face coupling system,and the propagation losses of the two waveguides were measured to be 2.26 dB/cm and 2.58 dB/cm,respectively.The Verdet constants were measured to be-72.7°/T·cm for the TGG substrate and-60.7°/T·cm for the ridge waveguide.The TGG waveguides have a potential in the fabrication of magneto-optical waveguide devices.展开更多
基金Supported by the National Natural Science Foundation of China(62105039)。
文摘In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance.
基金National Key Research and Development Program of China(2022YFF0707602)National Natural Science Foundation of China(62471097,62471115,62471101)National Natural Science Foundation of Sichuan(2025ZNSFSC0537)。
文摘[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.
文摘This study involved a comprehensive investigation aimed at achieving efficient multi-millijoule THz wave generation by exploiting the unique properties of cylindrical GaAs waveguides as effective mediators of the conversion of laser energy into THz waves.Through meticulous investigation,valuable insights into optimizing THz generation processes for practical applications were unearthed.By investigating Hertz potentials,an eigen-value equation for the solutions of the guided modes(i.e.,eigenvalues)was found.The effects of various param-eters,including the effective mode index and the laser pulse power,on the electric field components of THz radia-tion,including the fundamental TE(transverse electric)and TM(transverse magnetic)modes,were evaluated.By analyzing these factors,this research elucidated the nuanced mechanisms governing THz wave generation within cylindrical GaAs waveguides,paving the way for refined methodologies and enhanced efficiency.The sig-nificance of cylindrical GaAs waveguides extends beyond their roles as mere facilitators of THz generation;their design and fabrication hold the key to unlocking the potential for compact and portable THz systems.This trans-formative capability not only amplifies the efficiency of THz generation but also broadens the horizons of practical applications.
文摘A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications.
基金Supported by the National Key Research and Development Program of China(2021YFB2800201)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43000000)。
文摘A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.
基金supported by the National Natural Science Foundation of China(No.62375031)the Basic Research Project of Chongqing Science and Technology Commission(No.CSTC-2021jcyj-bsh0194)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN202200602)。
文摘In this paper,a terahertz slotted waveguide array antenna is designed based on photonic crystal,which can realize efficient radiation of terahertz waves.The electromagnetic wave is fed from the rectangular waveguide at the bottom of the antenna,coupled to photonic crystal waveguide through photonic crystal cavity,and radiated outward through slots at the top layer of antenna.The simulation results show that the antenna achieves a peak gain of 13.45 dBi at 360 GHz,a half-power beam width of 10.9°,and a side lobe level of−13.9 dB.The antenna based on photonic crystal has the advantages of low profile,low loss,and high radiation efficiency,which can be applied to terahertz wireless communication systems.
文摘Ferrimagnetic materials exhibiting remanence can be used to achieve unidirectional electromagnetic-field propagation in the form of magnetoplasmons(MPs)in the subwavelength regime.This study investigates the MP properties and various guiding modes in a hollow cylindrical waveguide made of materials that exhibit remanence.Pattern analysis and numerical simulations are used to demonstrate that dispersion relationships and electromagnetic-field distribution are strongly affected by the operating frequency and physical dimensions of the structure.In addition,the existence of two different guiding modes is proved,namely regular and surface-wave modes.By adjusting the operating frequency and reducing the diameter of the hollow cylinder,the regular mode can be suppressed so as to only retain the surface-wave mode,which enables unidirectional MP propagation in the cylindrical waveguide.Moreover,the unidirectional surface-wave mode is robust to backscattering due to surface roughness and defects,which makes it very useful for application in field-enhancement devices.
基金supported in part by the Natural Science Foundation of Tianjin(No.19JCYBJC16100)the Tianjin Innovation and Entrepreneurship Training Program(No.202210060027)。
文摘A triple-band miniaturized end-fire antenna based on the odd modes of spoof surface plasmonic polariton(SSPP)waveguide resonator is proposed in this paper.To meet the ever increasing demand for more communication channels and less antenna sizes,multi-band antennas are currently under intensive investigation.By a novel feeding method,three odd modes are excited on an SSPP waveguide resonator,which performs as an end-fire antenna operating at three bands,7.15-7.26 GHz,11.6-12.2 GHz and 13.5-13.64 GHz.It exhibits reasonably high and stable maximum gains of 5.26 dBi,7.97 dBi and 10.1 dBi and maximum efficiencies of 64%,92%and 98%at the three bands,respectively.Moreover,in the second band,the main beam angle shows a frequency dependence with a total scanning angle of 19°.The miniaturized triple-band antenna has a great potential in wireless communication systems,satellite communication and radar systems.
文摘The southern part of East Siberia(SES)is highly vulnerable to flooding caused by the extreme precipitation events(EPEs)during summer.Building on previously detected EPEs in SES and Mongolia,we examined wave propagation patterns for two periods:1982-98 and 1999-2019.Our analysis revealed distinct wave train configurations and geopotential anomalies preceding EPEs,with an increase in wave activity flux across the Northern Hemisphere,followed by a subsequent decrease during EPEs.Consequently,Eastern Siberia has experienced a significant rise in wave activity.Based on geopotential anomalies over Central Siberia accompanying EPEs,we identified two main types.The first,the ridge type,is predominant during the first period and features a meridional contrast with a positive geopotential(and temperature)anomaly over Central Siberia and a negative anomaly over the subtropical regions along the same longitude.The second type,termed the trough type,is more typical for the second period.It involves either a negative geopotential anomaly or the zonal proximity of positive and negative geopotential anomalies over Central Siberia.The trough type,marked by zonally oriented anomalies in geopotential and temperature,results in a more pronounced temperature decrease before EPEs and significant zonal temperature contrasts.Further,it is related to more stationary waves over Northern Eurasia,with persistent positive geopotential anomalies over Europe linked to quasi-stationary troughs over Central Siberia and positive anomalies east of Lake Baikal.Our findings align with shifts in boreal summer teleconnection patterns,reflecting significant changes in wave propagation patterns that have occurred since the late 1990s.
基金supported by Natural Science Foundation of Gansu Province(NO.21JR7RA289)。
文摘To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,utilizing the reflection of the grating to achieve the electromagnetic-like induced transparency effect at different wavelengths.The high slope characteristics of the EIT-like effect enabled a higher quality factor and sensitivity.The transmission principle of the structure was analyzed using the transmission matrix method,and the transmission spectrum and mode field distribution were simulated using the finite-difference time-domain(FDTD)method,and the device structure parameters were adjusted for optimization.Simulation results show that the proposed structure achieves an EIT-like effect with a quality factor of 59267.5.In the analysis of refractive index sensing characteristics,the structure exhibits a sensitivity of 408.57 nm/RIU and a detection limit of 6.23×10^(-5) RIU.Therefore,the proposed structure achieved both a high quality factor and refractive index sensitivity,demonstrating excellent sensing performance for applications in environmental monitoring,biomedical fields,and other areas with broad market potential.
基金funding support from the National Natural Science Foundation of China(Grant No.52404224)Beijing Natural Science Foundation(Grant No.8244051)the fellowship of China National Postdoctoral Program for Innovative Talents(Grant No.BX20230175).
文摘Compared to existing deformation monitoring methods,landslide early warning can be achieved by detecting precursor signals of slope instability through acoustic emission(AE).Acquisition of AE signals generated by active waveguide facilitates monitoring the development of shear surface and provides a foundation for quantifying landslide movement.Backfill particles are the dominant AE sources in active waveguides,typically chosen from materials such as gravels or sands.However,the influence of particle sizes and gradings has not been clarified in existing laboratory models or field monitoring.This research introduces a direct shear test for active waveguide,where spherical glass beads are employed to precisely regulate the size and grading of backfill particles.A programmable logic controller maintains a constant shearing speed and equivalent total deformation.Through a comprehensive analysis of AE,deformation,and mechanical measurements,this study evaluates the impact of particle size and grading on monitoring capabilities.The findings suggest that the AE mechanism in glass beads is attributed to particle collision and dislocation,leading to AE events characterized by low amplitude and energy levels.The percentage of high-amplitude AE events rises steadily with the progression of shearing.The correlation between shear force,cumulative ring down count(RDC)of AE,and deformation conforms to a power function,with the exponent relying on particle size,grading,and shearing speed.Notably,the combination of small particles and low shearing speeds can yield the maximum cumulative RDC,while selecting particles with uneven grading will significantly enhance the intensity of AE signals from active waveguide.
基金supported by the UK’s Engineering and Physical Sciences Research Council(Grant Nos.EP/V000624/1,EP/X03495X/1,EP/X041166/1,and EP/T02643X/1)the Royal Society(Grant No.RG\R2\232531).
文摘Research on supercontinuum sources on silicon has made significant progress in the past few decades.However,conventional approaches to broaden the spectral bandwidth often rely on complex and critical dispersion engineering by optimizing the core thickness or introducing the cladding with special materials and structures.We propose and demonstrate supercontinuum generation using long-periodgrating(LPG)waveguides on silicon with a C-band pump.The LPG waveguide is introduced for quasi-phase matching,and the generated supercontinuum spectrum is improved greatly with grating-induced dispersive waves.In addition,the demonstrated LPG waveguide shows a low propagation loss comparable with regular silicon photonic waveguides without gratings.In experiments,when using a 1550-nm 75-fs pulse pump with a pulse energy of 200 pJ,the supercontinuum spectrum generated with the present LPG waveguide shows an ultrabroad extent from 1150 to 2300 nm,which is much wider by 200 nm than that achieved by dispersionengineered uniform silicon photonic waveguides on the same chip.This provides a promising option for on-chip broadband light source for silicon photonic systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175050 and U2341245)the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2024054).
文摘Diffractive optical neural networks(DONNs)have exhibited the advantages of parallelization,high speed,and low consumption.However,the existing DONNs based on free-space diffractive optical elements are bulky and unsteady.In this study,we propose a planar-waveguide integrated diffractive neural network chip architecture.The three diffractive layers are engraved on the same side of a quartz wafer.The three-layer chip is designed with 32-mm3 processing space and enables a computing speed of 3.1×109 Tera operations per second.The results show that the proposed chip achieves 73.4%experimental accuracy for the Modified National Institute of Standards and Technology database while showing the system’s robustness in a cycle test.The consistency of experiments is 88.6%,and the arithmetic mean standard deviation of the results is~4.7%.The proposed chip architecture can potentially revolutionize high-resolution optical processing tasks with high robustness.
文摘Compact antenna designs have become a critical component in the recent advancements of wireless communication technologies over the past few decades. This paper presents a self-multiplexing antenna based on diplexing and quadruplexing Substrate-Integrated Waveguide (SIW) cavities. The diplexing structure incorporates two V-shaped slots, while the quadruplexing structure advances this concept by combining the slots to form a cross-shaped configuration within the cavity. The widths and lengths of the slots are carefully tuned to achieve variations in the respective operating frequencies without affecting the others. The proposed diplexing antenna resonates at 8.48 and 9.2 GHz, with a frequency ratio of 1.08, while the quadruplexing antenna operates at 6.9, 7.1, 7.48, and 8.2GHz. Both designs exhibit isolation levels well below –20dB and achieve a simulated peak gain of 5.6 dBi at the highest frequency, with a compact cavity area of 0.56 λg^(2). The proposed antennas operate within the NR bands (n12, n18, n26), making them suitable for modern high-speed wireless communication systems. Moreover, the properties like multiband operation, compactness, high isolation, low loss, and low interference make the antenna favorable for the high-speed railway communication systems.
基金Project supported by the Education Department of Jilin Province,China(Grant No.JJKH20231291KJ)。
文摘We design dynamical Casimir arrays(DCA)consisting of giant atoms and coupled resonator waveguides(CRWs)to investigate the Einstein–Podolsky–Rosen(EPR)steering at finite temperatures.Our designed system exhibits an asymmetry in its structure,which is caused by the differences in the sizes and the coupling positions of the giant atoms.The system achieves different types of EPR steering and the reversal of one-way EPR steering by modulating parameters.Furthermore,the symmetry and asymmetry of the system structure,in their responses to parameter modulation,both reveal the asymmetry of EPR steering.In this process,we discover that with the increase in temperature,different types of steering can be transferred from Casimir photons to giant atoms.We also achieve the monogamy of the multipartite system.These results provide important assistance for secure quantum communication,and further intuitively validating the asymmetry of EPR steering from multiple perspectives.
基金supported in part by the National Natural Science Foundation of China(No.82071940)the National Key R&D Program of China(No.2018YFF01013603)。
文摘Thermoacoustic imaging(TAI)contrast comes from different electrical properties(EPs)of microwave absorption.However,the relationship between the permittivity distribution and the electric field polarization limits the application of TAI in some extent.Here,we present a polarimetric thermoacoustic imaging(pTAI)system based on a rotary waveguide.By optimizing a rotary waveguide(insertion loss<0.2dB,return loss>15dB at 3GHz),the excitation wave emitted from a horn antenna can rotate freely in the direction of polarization.The multi-polarization pulsed microwave signal is used to evoke the thermoacoustic signals(TAS)of samples in different polarimetric directions.The simulation for pTAI with a multi-directional sample is first obtained.Then,we rotated the rotary waveguide at 10°/s and experimentally demonstrated the performance of pTAI by imaging three randomly placed soy sauce tubes and ex vivo beef.This study suggests that pTAI has potential for dielectric properties“diffusion”mapping,for example,provides conductivity tensor mapping of brain and muscle.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB2802401)the Beijing Municipal Natural Science Foundation(Grant No.Z221100006722002).
文摘Silicon nitride(Si_(3)N_(4))photonic platform has recently attracted increasing attention for Si_(3)N_(4) photonic integrated circuits(PIC).A diffraction grating with the only etched top-layer in tri-layer Si3N4 optical waveguides is proposed,which shows a simple fabrication process,high upward diffraction efficiency,and lower far-field divergence angle.The measured results of the diffraction grating at a wavelength of 905 nm show the average upward diffraction efficiency of 90.5% and average far-field divergence angle of 0.154°,which shows a good agreement with the design results with the upward diffraction efficiency of 91.6%and far-field divergence angle of 0.105°.
基金supported by the National Natural Science Foundation of China(Grant Nos.12475010 and 119075023)the Major Project of the Natural Science Foundation of Anhui Provincial Department of Education(Grant No.2022AH040053)the Key Natural Scientific Research Projects of Universities in Anhui Province(Grant Nos.2023AH051078 and 2023AH051125)。
文摘The phase-controlled single-photon transport properties of a giant atom coupled to a one-dimensional waveguide are investigated.The coupling between the giant atom and the waveguide is modeled as a multi-point interaction.The coupling strengths between the giant atom and the waveguide are represented as complex numbers with associated phases.Analytical expressions for the scattering amplitudes are obtained using the real-space Hamiltonian method.The results show that the characteristics of the scattering spectra,including the positions of peaks(or dips)and the full width at half maximum,can be tuned by adjusting the phase difference between the coupling strengths.Further calculations reveal that the scattering spectra can be either super-broadened or sub-broadened.The conditions for achieving perfect nonreciprocal single-photon transport in the Markovian regime are also discussed.Moreover,we demonstrate the control of single-photon transport through phase differences in the non-Markovian regime.Our results may find applications in the design of quantum devices operating at the single-photon level,based on waveguide quantum electrodynamics.
基金Project(52175445)supported by the National Natural Science Foundation of ChinaProject(2022JJ30743)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2023GK2024)supported by the Key Research and Development Program of Hunan Province,ChinaProject(2023ZZTS0391)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.
基金supported by the Postgraduate Research and Innovation Program of Jiangsu Province,China(Grant No.KYCX241133)the National Natural Science Foundation of China(Grant No.11405041)+1 种基金the Key Research and Development Program of Jiangxi Province,China(Grant No.20223BBE51020)the Opening Fund of Key Laboratory of Rare Earths(Chinese Academy of Sciences).
文摘Integrating the magneto-optical effect into a waveguide-based photonic device becomes more and more interesting.In the work,the planar optical waveguide firstly was prepared in a terbium gallium garnet crystal(TGG)via the proton implantation with the energy of 4×10^(-1)MeV and the fluence of 6×10^(8)ions/μm^(2).Subsequently,a femtosecond laser with a central wavelength of 800 nm and a power of 3 mW was used to ablate the surface of the planar waveguide,forming the ridge optical waveguide.The dark-mode curve of the planar waveguide was measured by a prism coupling technique.The top-view morphology of the ridge waveguide was observed via a Nikon microscope.The mode field distributions of the planar and ridge waveguides were obtained by an end-face coupling system,and the propagation losses of the two waveguides were measured to be 2.26 dB/cm and 2.58 dB/cm,respectively.The Verdet constants were measured to be-72.7°/T·cm for the TGG substrate and-60.7°/T·cm for the ridge waveguide.The TGG waveguides have a potential in the fabrication of magneto-optical waveguide devices.