This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radi...This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.展开更多
In deeply buried tunneling projects,geological conditions are often complex and varied.Microseismic monitoring systems are extensively deployed to enhance construction safety.However,when the current geological condit...In deeply buried tunneling projects,geological conditions are often complex and varied.Microseismic monitoring systems are extensively deployed to enhance construction safety.However,when the current geological conditions differ from those present during the signal collection for model training,recognition accuracy tends to decline significantly.Therefore,improving the applicability and stability of microseismic waveform recognition models across varying geological conditions has emerged as a critical challenge.To address this issue,we first analyze the impact of lithological changes and the development of structural planes on the features of microseismic waveforms.Subsequently,we propose a category-domain-aligned transfer learning method that enables the transfer of recognition capabilities across geological conditions by facilitating similar feature extraction and the recognition of cross-geological fracture waveforms.In this model,feature separation modeling enhances the extraction of category features of waveforms under different geological conditions.A deep transfer learning mechanism distinguishes between unique and common features,allowing for the capture of essential features necessary for model parameter updates.Through comparative experiments and feature distribution alignment and visualization,we demonstrate that the accuracy of microseismic waveform recognition across geological conditions achieves 90%.Additionally,the performance of our method is validated using microseismic signals collected from different sections of the construction site.展开更多
Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants wit...Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants with primary dysmenorrhea were randomly divided into dense-sparse wave,continuous wave,and discontinuous wave groups in a 1:1:1 ratio.Two lateral Ciliao(BL 32)points were used.All three groups started treatment 3–5 days before menstruation,once a day for six sessions per course of treatment,one course of treatment per menstrual cycle,and three menstrual cycles.The primary outcome measure was the proportion with an average visual analog scale(VAS)score reduction of≥50%from baseline for dysmenorrhea in the third menstrual cycle during treatment.The secondary outcome measures included changes in dysmenorrhea VAS scores,Cox Menstrual Symptom Scale scores and the proportion of patients taking analgesic drugs.Results: The proportion of cases where the average VAS score for dysmenorrhea decreased by≥50%from baseline in the third menstrual cycle was not statistically significant(P>.05).Precisely 30 min after acupuncture and regarding immediate analgesia on the most severe day of dysmenorrhea,there was a statistically significant difference in the dense-sparse wave group compared with the other two groups during the third menstrual cycle(P<.05).Additionally,there was a statistically significant difference between the dense-sparse wave and discontinuous wave groups 24 h after acupuncture(P<.05).Conclusions: Waveform electroacupuncture can alleviate primary dysmenorrhea and its related symptoms in patients.The three groups showed similar results in terms of short-and long-term analgesic efficacy and a reduction in the number of patients taking analgesic drugs.Regarding achieving immediate analgesia,the dense-sparse wave group was slightly better than the other two groups.展开更多
Terahertz(THz)wireless communication has been recognized as a powerful technology to meet the everincreasing demand of ultra-high rate services.In order to achieve efficient and reliable wireless communications over T...Terahertz(THz)wireless communication has been recognized as a powerful technology to meet the everincreasing demand of ultra-high rate services.In order to achieve efficient and reliable wireless communications over THz bands,it is extremely necessary to find an appropriate waveform for THz communications.In this paper,performance comparison of various single-carrier and multi-carrier waveforms over THz channels will be provided.Specifically,first,a system model for terahertz communication is briefly described,which includes amplifier nonlinearity,propagation characteristic,phase noise,etc.Then,the transceiver architectures related to both single-carrier and multi-carrier waveforms are presented,as well as their corresponding signal processing techniques.To evaluate the suitability of the waveforms,key performance metrics concerning power efficiency,transmission performance,and computational complexity are provided.Simulation results are provided to compare and validate the performance of different waveforms,which demonstrate the outstanding performance of Discrete-Fourier-Transform spread Orthogonal Frequency Division Multiplexing(DFT-s-OFDM)to THz communications when compared to Cyclic Prefix-OFDM(CP-OFDM)and other single-carrier waveforms.展开更多
Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtai...Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.展开更多
Objective To use different waveforms of electroacupuncture (EA) to treat peripheral facial paralysis and assess the clinical efficacy of three kinds of EA waveforms (continuous wave, disperse-dense wave and intermi...Objective To use different waveforms of electroacupuncture (EA) to treat peripheral facial paralysis and assess the clinical efficacy of three kinds of EA waveforms (continuous wave, disperse-dense wave and intermittent wave). Methods One hundred and twenty nine patients of Bell's palsy were randomly divided into a continuous wave group (45 cases), a disperse-dense wave group (40 cases) and an intermittent wave group (44 cases). The acupoints selected were Dicing (地仓 ST 4), Jiache (颊车 ST 6), Taiyang (太阳 EX-HN 5), Xiaguan (下关 ST 7), Hegu (合谷 LI 4), etc. The House-Brackmann (HB) scale was used in assessment on the day of inclusion, after the 1st, 2nd, 3rd and 4th courses of treatment and the 1st and 3rd months after the end of treatment during the follow-up visit respectively. Results The cured rates were 68.9% (31/45), 60.0% (24/40) and 65.9% (29/44) respectively in the continuous wave group, the disperse-dense wave group and the intermittent wave group. The results of the rank sum test showed that the efficacy comparison among three groups did not show statistically significant difference (P〉0.05). Conclusion EA achieved the significant clinical efficacy on peripheral facial paralysis and there is no significant difference in the efficacy among different waveforms. It is suggested that the clinical efficacy of EA on the disease had no significant correlation with the waveforms.展开更多
During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical m...During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical mode decomposition(EMD), and the combination of SSA and EMD to obtain the denoised waveforms. The advantages of the combined method were verified and the accuracy of the mean sea surface height(MSSH) model was improved. Comparing the denoising effect of the three methods, the results show that the signal-to-noise ratio(SNR), correlation coefficient and root-mean-square error are effectively improved by the combination of SSA and EMD. The sea surface heights(SSHs) were remeasured with a 50% threshold retracker of denoised waveforms, and the MSSH model of the Caspian Sea with a grid of 1’× 1’was established from the retracked SSHs of Jason-1/2/3. Taking the mean value of the four models as a control, it is found that the model calculated by the combined denoising method has the highest accuracy. This indicates that using the combined denoising method to reduce the noise level is beneficial to improve the accuracy of the MSSH model.展开更多
The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes.Manual estimation of polarities is not only time-consuming but also p...The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes.Manual estimation of polarities is not only time-consuming but also prone to human errors.This warrants a need for an automated algorithm for first motion polarity determination.We present a deep learning model-PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms.PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset(INSTANCE)and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters.We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces.Furthermore,we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.展开更多
Stochastic waveforms are constructed whose expected autocorrelation can be made arbitrarily small outside the origin. These waveforms are unimodular and complex-valued. Waveforms with such spike like autocorrelation a...Stochastic waveforms are constructed whose expected autocorrelation can be made arbitrarily small outside the origin. These waveforms are unimodular and complex-valued. Waveforms with such spike like autocorrelation are desirable in waveform design and are particularly useful in areas of radar and communications. Both discrete and continuous waveforms with low expected autocorrelation are constructed. Further, in the discrete case, frames for Cd are constructed from these waveforms and the frame properties of such frames are studied.展开更多
The goal is to help create smooth energy-optimal monophasic pulse waveforms for defibrillation using the Luo-Rudy cardiomyocyte membrane computer model. The waveforms were described with the help of the piecewise line...The goal is to help create smooth energy-optimal monophasic pulse waveforms for defibrillation using the Luo-Rudy cardiomyocyte membrane computer model. The waveforms were described with the help of the piecewise linear function. Each line segment provides a transition from one present level of the transmembrane potential to the next with a minimal energy value. The duration of the last segment was defined as a minimum duration at which an action potential occurs. Monophasic waveforms of segments 3, 10 and 29 were built using different increments of the transmembrane potential. The pulse energy efficiency was evaluated according to their threshold energy ratios in mA2·ms/cm4. There was virtually no difference between the threshold energy ratios of the three waveforms constructed and those of the previously studied energy-optimal half- sine waveform: 241 - 242 and 243 mA2·ms/cm4. The pulse waveform constructed is characterized by a low rise and fall as the duration of the rise is ~1.5 times longer than that of the fall. Conclusion: Energy-optimal smooth monophasic pulse waveforms have the same threshold energy ratio as the optimal half-sine one which was studied before. The latter is equivalent to the first phase of biphasic quasisinusoidal Gurvich-Venin pulse which has been used in Russia since 1972. Thus, the use of the Luo-Rudy cardiomyocyte membrane model appears to offer no possibilities for a substantial increase in the energy efficiency (threshold energy ratio reduction) of the classical monophasic defibrillation pulse waveforms.展开更多
Radars and their applications were, for a long time, reserved to national defense, air security or weather service domains. For a few years, with the emergence of new technologies, radar applications have been develop...Radars and their applications were, for a long time, reserved to national defense, air security or weather service domains. For a few years, with the emergence of new technologies, radar applications have been developed and have become known in the civil domain. In particular, the arrival of UWB—Ultra-Wideband technology allows the design of compact and low-cost radars with multiple fields of application. In this paper, we focus on road applications, such as driving assistance with the objective of increasing safety and reducing accidents. In classical UWB radar systems, Gaussian and monocycle pulses are commonly used. In previous works, original waveforms based on orthogonal functions (Hermite and Gegenbauer) were proposed. These provide a good spatial resolution, suitable for radar detection. Another advantage of these waveforms is their multiple access capability, due to their orthogonality. The aim of the study presented in this article is to compare simulation and experimental results obtained, especially for short-range anticollision radar application, using these waveforms in one part and Gaussian and monocycle pulses in the other part. The originality of this paper relies on the new approach. Indeed, this comparison study using these waveforms has never been done before. Finally, some examples of real experiments in a real road environment with different waveforms are presented and analysed.展开更多
The evolution of global mobile data over the past decades in broadcasting, Internet of Things (IoT), education, healthcare, commerce, and energy has put strong pressure on 3G/4G mobile networks to improve their servic...The evolution of global mobile data over the past decades in broadcasting, Internet of Things (IoT), education, healthcare, commerce, and energy has put strong pressure on 3G/4G mobile networks to improve their service offerings. These generations of mobile networks were initially invented to meet the requirements of the above-mentioned applications. However, as the requirements in these applications continue to increase, new mobile technologies such as 5G (fifth generation), 5G and beyond (B5G, beyond fifth generation), and 6G (sixth generation) are still progressing and being experimented. These networks are very heterogeneous generations of mobile networks that will have to offer very high throughput per user, good energy efficiency, better traffic capacity per area, improved spectral efficiency, very low latency, and high mobility. To meet these requirements, the radio interface of future mobile networks will have to be flexible and rationalized the available frequency resources. Therefore, new modulation methods, access techniques and waveforms capable of supporting these technological changes are proposed. This review presents brief descriptions of the types of 5G, B5G, and 6G waveforms. The 5G consists of OFDM including its transmission techniques: generalized frequency division multiplexing (GFDM), filter bank based multi-carrier (FBMC), universal filtered multi-carrier (UFMC), and index modulation (IM). Meanwhile, the 6G covers orthogonal time frequency space (OTFS), orthogonal chirp division multiplexing (OCDM) and orthogonal time sequence multiplexing (OTSM). The networks’ potentialities, advantages, disadvantages, and future directions are outlined.展开更多
P-wave waveforms in the distance range between 12°and 30°were analyzed to investigate upper-mantle P velocity structures beneath the Tibetan Plateau and surrounding areas.The waveform data from 504 earthquak...P-wave waveforms in the distance range between 12°and 30°were analyzed to investigate upper-mantle P velocity structures beneath the Tibetan Plateau and surrounding areas.The waveform data from 504 earthquakes with magnitudes larger than 5.0 between 1990 and 2005 that occurred within 30°from the center of the Plateau were modelled.We divided the study area into 6 regions and modeled upper-mantle-distance P waveforms with turning points beneath each region separately.The results show that the uppermantle P-wave velocity structures beneath India,the Himalayas,and the Lhasa Terrane are similar and contain a high-velocity lid about 250 km thick.The upper-mantle velocities down to 200 km beneath the Qiangtang Terrane,the Tarim Basin,and especially the Songpan-GarzêTerrane are lower than those in the south.The 410-km discontinuity beneath these two terranes is elevated by about 20 km.Highvelocity anomalies are found in the transition zone below 500 km under the Lhasa and Qiangtang Terranes.The results suggest that the Tibetan Plateau was generated by thrusting of the Indian mantle lithosphere under the southern part of Tibet.Portions of the thickened Eurasian mantle lithosphere were delaminated;they are now sitting in the transition zone beneath southern Tibet and atop of the 410-km discontinuity underneath northern Tibet.展开更多
The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at t...The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at the mesoscopic scale, such as loading frequency, stress amplitude, mean stress, confining pressure and loading sequence, are also investigated with sinusoidal waveform in detail. The related numerical results have demonstrated that: 1) the loading waveform has a certain effect on rock failure processes. The square waveform has the most damage within these waveforms, while the triangle waveform has less damage than sinusoidal waveform. In each cycle, the number of microscopic cracks increases in the loading stage, while it keeps nearly constant in the unloading stage. 2) The loading frequency, stress amplitude, mean stress, confining pressure and loading sequence have considerable effects on rock damage subjected to cyclic loading. The higher the loading frequency, stress amplitude and mean stress, the greater the damage the rock accumulated; in contrast, the lower the confining pressure, the greater the damage the rock has accumulated. 3) There is a threshold value of mean stress and stress amplitude, below which no further damage accumulated after the first few cycle loadings. 4) The high-to-low loading sequence has more damage than the low-to-high loading sequence, suggesting that the rock damage is loading-path dependent.展开更多
The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolut...The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.展开更多
The waveform inversion method is applied-- using synthetic ocean-bottom seismometer (OBS) data--to study oceanic crust structure. A niching genetic algorithm (NGA) is used to implement the inversion for the thickn...The waveform inversion method is applied-- using synthetic ocean-bottom seismometer (OBS) data--to study oceanic crust structure. A niching genetic algorithm (NGA) is used to implement the inversion for the thickness and P-wave velocity of each layer, and to update the model by minimizing the objective function, which consists of the misfit and cross-correlation of observed and synthetic waveforms. The influence of specific NGA method parameters is discussed, and suitable values are presented. The NGA method works well for various observation systems, such as those with irregular and sparse distribu- tion of receivers as well as single receiver systems. A strategy is proposed to accelerate the convergence rate by a factor of five with no increase in computational complex- ity; this is achieved using a first inversion with several generations to impose a restriction on the preset range of each parameter and then conducting a second inversion with the new range. Despite the successes of this method, its usage is limited. A shallow water layer is not favored because the direct wave in water will suppress the useful reflection signals from the crust. A more precise calculation of the air-gun source signal should be considered in order to better simulate waveforms generated in realistic situa- tions; further studies are required to investigate this issue.展开更多
By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular wavefo...By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular waveform and pulsed output wave superimposed on a rectangular waveform on the penetration depth of weld. Research results indicate that the average power, duty cycle, frequency and peak power of rectangular wave affect the weld penetration depth to different extent. Results of experiments and analysis also indicate that the pulse delay time, pulse width and the power ratio of pulse to rectangular waveform seriously influence the penetration when the pulsed wave is superimposed on a rectangular waveform.展开更多
Agilent 33200A family of function/arbitrary waveform generators are widely used in labs for creating arbitrary waveforms.Flexible applications of function/arbitrary waveform generator 33250A which is made by Agilent c...Agilent 33200A family of function/arbitrary waveform generators are widely used in labs for creating arbitrary waveforms.Flexible applications of function/arbitrary waveform generator 33250A which is made by Agilent company are expatiated.There are three methods of transferring waveform data to arbitrary waveform generator 33250A,among which,the front panel method can produce a simple interface for arbitrary waveforms and is applicable to the composition of a small amount of linear waveform segment,and the progress of this method is explained in detail.This way is convenient and can be widely used,and it will offer some good guidance in library works.展开更多
Plasma atomic layer etching is proposed to attain layer-by-layer etching, as it has atomic-scale resolution, and can etch monolayer materials. In the etching process, ion energy and angular distributions(IEADs) bomb...Plasma atomic layer etching is proposed to attain layer-by-layer etching, as it has atomic-scale resolution, and can etch monolayer materials. In the etching process, ion energy and angular distributions(IEADs) bombarding the wafer placed on the substrate play a critical role in trench profile evolution, thus importantly flexibly controlling IEADs in the process. Tailored bias voltage waveform is an advisable method to modulate the IEADs effectively, and then improve the trench profile. In this paper, a multi-scale model, coupling the reaction chamber model,sheath model, and trench model, is used to research the effects of bias waveforms on the atomic layer etching of Si in Ar/Cl2 inductively coupled plasmas. Results show that different discharge parameters, such as pressure and radio-frequency power influence the trench evolution progress with bias waveforms synergistically. Tailored bias waveforms can provide nearly monoenergetic ions, thereby obtaining more anisotropic trench profile.???展开更多
We demonstrate experimentally a radio frequency arbitrary waveform generator using the incoherent wavelength-to-time mapping technique. The system is implemented by amplitude modulation of a broadband optical resource...We demonstrate experimentally a radio frequency arbitrary waveform generator using the incoherent wavelength-to-time mapping technique. The system is implemented by amplitude modulation of a broadband optical resource whose spectrum is reshaped by a programmable optical pulse shaper and transmitted over a single mode fiber link. The shape of the generated waveform is controlled by the optical pulse shaper, and the fiber link introduces a certain group velocity delay to implement wavelength-to-time mapping. Assisted by the flexible optical pulse shaper, we obtain different shapes of optical waveforms, such as rectangle, triangle, and sawtooth waveforms. Furthermore, we also demonstrate ultra-wideband generation, such as Gaussian monocycle, doublet, and triplet waveforms, using the incoherent technique.展开更多
基金supported by the National Key R&D Program of China (No. 2022YFE0204100)the National Natural Science Foundation of China (12205067 and 12375199)the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF. 2022036)。
文摘This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.
基金supported by the National Natural Science Foundation of China(Grant Nos.U23A20297,52222810,52309126 and 52109116).
文摘In deeply buried tunneling projects,geological conditions are often complex and varied.Microseismic monitoring systems are extensively deployed to enhance construction safety.However,when the current geological conditions differ from those present during the signal collection for model training,recognition accuracy tends to decline significantly.Therefore,improving the applicability and stability of microseismic waveform recognition models across varying geological conditions has emerged as a critical challenge.To address this issue,we first analyze the impact of lithological changes and the development of structural planes on the features of microseismic waveforms.Subsequently,we propose a category-domain-aligned transfer learning method that enables the transfer of recognition capabilities across geological conditions by facilitating similar feature extraction and the recognition of cross-geological fracture waveforms.In this model,feature separation modeling enhances the extraction of category features of waveforms under different geological conditions.A deep transfer learning mechanism distinguishes between unique and common features,allowing for the capture of essential features necessary for model parameter updates.Through comparative experiments and feature distribution alignment and visualization,we demonstrate that the accuracy of microseismic waveform recognition across geological conditions achieves 90%.Additionally,the performance of our method is validated using microseismic signals collected from different sections of the construction site.
基金supported by Technology Innovation Special Project of Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine.
文摘Objective:To observe and compare the clinical effects of different electroacupuncture waveforms on primary dysmenorrhea.Methods: This was a prospective,randomized,three-group,parallel-controlled trial.Participants with primary dysmenorrhea were randomly divided into dense-sparse wave,continuous wave,and discontinuous wave groups in a 1:1:1 ratio.Two lateral Ciliao(BL 32)points were used.All three groups started treatment 3–5 days before menstruation,once a day for six sessions per course of treatment,one course of treatment per menstrual cycle,and three menstrual cycles.The primary outcome measure was the proportion with an average visual analog scale(VAS)score reduction of≥50%from baseline for dysmenorrhea in the third menstrual cycle during treatment.The secondary outcome measures included changes in dysmenorrhea VAS scores,Cox Menstrual Symptom Scale scores and the proportion of patients taking analgesic drugs.Results: The proportion of cases where the average VAS score for dysmenorrhea decreased by≥50%from baseline in the third menstrual cycle was not statistically significant(P>.05).Precisely 30 min after acupuncture and regarding immediate analgesia on the most severe day of dysmenorrhea,there was a statistically significant difference in the dense-sparse wave group compared with the other two groups during the third menstrual cycle(P<.05).Additionally,there was a statistically significant difference between the dense-sparse wave and discontinuous wave groups 24 h after acupuncture(P<.05).Conclusions: Waveform electroacupuncture can alleviate primary dysmenorrhea and its related symptoms in patients.The three groups showed similar results in terms of short-and long-term analgesic efficacy and a reduction in the number of patients taking analgesic drugs.Regarding achieving immediate analgesia,the dense-sparse wave group was slightly better than the other two groups.
基金supported in part by the National Key R&D Program of China under Grant 2018YFB1801501in part by the National Natural Science Foundation of China under Grant 62101306supported by OPPO Research Fund。
文摘Terahertz(THz)wireless communication has been recognized as a powerful technology to meet the everincreasing demand of ultra-high rate services.In order to achieve efficient and reliable wireless communications over THz bands,it is extremely necessary to find an appropriate waveform for THz communications.In this paper,performance comparison of various single-carrier and multi-carrier waveforms over THz channels will be provided.Specifically,first,a system model for terahertz communication is briefly described,which includes amplifier nonlinearity,propagation characteristic,phase noise,etc.Then,the transceiver architectures related to both single-carrier and multi-carrier waveforms are presented,as well as their corresponding signal processing techniques.To evaluate the suitability of the waveforms,key performance metrics concerning power efficiency,transmission performance,and computational complexity are provided.Simulation results are provided to compare and validate the performance of different waveforms,which demonstrate the outstanding performance of Discrete-Fourier-Transform spread Orthogonal Frequency Division Multiplexing(DFT-s-OFDM)to THz communications when compared to Cyclic Prefix-OFDM(CP-OFDM)and other single-carrier waveforms.
文摘Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.
文摘Objective To use different waveforms of electroacupuncture (EA) to treat peripheral facial paralysis and assess the clinical efficacy of three kinds of EA waveforms (continuous wave, disperse-dense wave and intermittent wave). Methods One hundred and twenty nine patients of Bell's palsy were randomly divided into a continuous wave group (45 cases), a disperse-dense wave group (40 cases) and an intermittent wave group (44 cases). The acupoints selected were Dicing (地仓 ST 4), Jiache (颊车 ST 6), Taiyang (太阳 EX-HN 5), Xiaguan (下关 ST 7), Hegu (合谷 LI 4), etc. The House-Brackmann (HB) scale was used in assessment on the day of inclusion, after the 1st, 2nd, 3rd and 4th courses of treatment and the 1st and 3rd months after the end of treatment during the follow-up visit respectively. Results The cured rates were 68.9% (31/45), 60.0% (24/40) and 65.9% (29/44) respectively in the continuous wave group, the disperse-dense wave group and the intermittent wave group. The results of the rank sum test showed that the efficacy comparison among three groups did not show statistically significant difference (P〉0.05). Conclusion EA achieved the significant clinical efficacy on peripheral facial paralysis and there is no significant difference in the efficacy among different waveforms. It is suggested that the clinical efficacy of EA on the disease had no significant correlation with the waveforms.
基金We acknowledge the National Natural Science Foundation of China(grant number 41974013)for financial support.
文摘During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical mode decomposition(EMD), and the combination of SSA and EMD to obtain the denoised waveforms. The advantages of the combined method were verified and the accuracy of the mean sea surface height(MSSH) model was improved. Comparing the denoising effect of the three methods, the results show that the signal-to-noise ratio(SNR), correlation coefficient and root-mean-square error are effectively improved by the combination of SSA and EMD. The sea surface heights(SSHs) were remeasured with a 50% threshold retracker of denoised waveforms, and the MSSH model of the Caspian Sea with a grid of 1’× 1’was established from the retracked SSHs of Jason-1/2/3. Taking the mean value of the four models as a control, it is found that the model calculated by the combined denoising method has the highest accuracy. This indicates that using the combined denoising method to reduce the noise level is beneficial to improve the accuracy of the MSSH model.
文摘The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes.Manual estimation of polarities is not only time-consuming but also prone to human errors.This warrants a need for an automated algorithm for first motion polarity determination.We present a deep learning model-PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms.PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset(INSTANCE)and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters.We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces.Furthermore,we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.
文摘Stochastic waveforms are constructed whose expected autocorrelation can be made arbitrarily small outside the origin. These waveforms are unimodular and complex-valued. Waveforms with such spike like autocorrelation are desirable in waveform design and are particularly useful in areas of radar and communications. Both discrete and continuous waveforms with low expected autocorrelation are constructed. Further, in the discrete case, frames for Cd are constructed from these waveforms and the frame properties of such frames are studied.
文摘The goal is to help create smooth energy-optimal monophasic pulse waveforms for defibrillation using the Luo-Rudy cardiomyocyte membrane computer model. The waveforms were described with the help of the piecewise linear function. Each line segment provides a transition from one present level of the transmembrane potential to the next with a minimal energy value. The duration of the last segment was defined as a minimum duration at which an action potential occurs. Monophasic waveforms of segments 3, 10 and 29 were built using different increments of the transmembrane potential. The pulse energy efficiency was evaluated according to their threshold energy ratios in mA2·ms/cm4. There was virtually no difference between the threshold energy ratios of the three waveforms constructed and those of the previously studied energy-optimal half- sine waveform: 241 - 242 and 243 mA2·ms/cm4. The pulse waveform constructed is characterized by a low rise and fall as the duration of the rise is ~1.5 times longer than that of the fall. Conclusion: Energy-optimal smooth monophasic pulse waveforms have the same threshold energy ratio as the optimal half-sine one which was studied before. The latter is equivalent to the first phase of biphasic quasisinusoidal Gurvich-Venin pulse which has been used in Russia since 1972. Thus, the use of the Luo-Rudy cardiomyocyte membrane model appears to offer no possibilities for a substantial increase in the energy efficiency (threshold energy ratio reduction) of the classical monophasic defibrillation pulse waveforms.
文摘Radars and their applications were, for a long time, reserved to national defense, air security or weather service domains. For a few years, with the emergence of new technologies, radar applications have been developed and have become known in the civil domain. In particular, the arrival of UWB—Ultra-Wideband technology allows the design of compact and low-cost radars with multiple fields of application. In this paper, we focus on road applications, such as driving assistance with the objective of increasing safety and reducing accidents. In classical UWB radar systems, Gaussian and monocycle pulses are commonly used. In previous works, original waveforms based on orthogonal functions (Hermite and Gegenbauer) were proposed. These provide a good spatial resolution, suitable for radar detection. Another advantage of these waveforms is their multiple access capability, due to their orthogonality. The aim of the study presented in this article is to compare simulation and experimental results obtained, especially for short-range anticollision radar application, using these waveforms in one part and Gaussian and monocycle pulses in the other part. The originality of this paper relies on the new approach. Indeed, this comparison study using these waveforms has never been done before. Finally, some examples of real experiments in a real road environment with different waveforms are presented and analysed.
文摘The evolution of global mobile data over the past decades in broadcasting, Internet of Things (IoT), education, healthcare, commerce, and energy has put strong pressure on 3G/4G mobile networks to improve their service offerings. These generations of mobile networks were initially invented to meet the requirements of the above-mentioned applications. However, as the requirements in these applications continue to increase, new mobile technologies such as 5G (fifth generation), 5G and beyond (B5G, beyond fifth generation), and 6G (sixth generation) are still progressing and being experimented. These networks are very heterogeneous generations of mobile networks that will have to offer very high throughput per user, good energy efficiency, better traffic capacity per area, improved spectral efficiency, very low latency, and high mobility. To meet these requirements, the radio interface of future mobile networks will have to be flexible and rationalized the available frequency resources. Therefore, new modulation methods, access techniques and waveforms capable of supporting these technological changes are proposed. This review presents brief descriptions of the types of 5G, B5G, and 6G waveforms. The 5G consists of OFDM including its transmission techniques: generalized frequency division multiplexing (GFDM), filter bank based multi-carrier (FBMC), universal filtered multi-carrier (UFMC), and index modulation (IM). Meanwhile, the 6G covers orthogonal time frequency space (OTFS), orthogonal chirp division multiplexing (OCDM) and orthogonal time sequence multiplexing (OTSM). The networks’ potentialities, advantages, disadvantages, and future directions are outlined.
基金supported by funding from the Strategic Priority Research Program(B)of Chinese Academy of Sciences through grant XDB18010304Natural Science Foundation of China through grant 41322027,41374060,41374079,41661164035
文摘P-wave waveforms in the distance range between 12°and 30°were analyzed to investigate upper-mantle P velocity structures beneath the Tibetan Plateau and surrounding areas.The waveform data from 504 earthquakes with magnitudes larger than 5.0 between 1990 and 2005 that occurred within 30°from the center of the Plateau were modelled.We divided the study area into 6 regions and modeled upper-mantle-distance P waveforms with turning points beneath each region separately.The results show that the uppermantle P-wave velocity structures beneath India,the Himalayas,and the Lhasa Terrane are similar and contain a high-velocity lid about 250 km thick.The upper-mantle velocities down to 200 km beneath the Qiangtang Terrane,the Tarim Basin,and especially the Songpan-GarzêTerrane are lower than those in the south.The 410-km discontinuity beneath these two terranes is elevated by about 20 km.Highvelocity anomalies are found in the transition zone below 500 km under the Lhasa and Qiangtang Terranes.The results suggest that the Tibetan Plateau was generated by thrusting of the Indian mantle lithosphere under the southern part of Tibet.Portions of the thickened Eurasian mantle lithosphere were delaminated;they are now sitting in the transition zone beneath southern Tibet and atop of the 410-km discontinuity underneath northern Tibet.
基金Projects(11702235,51641905,41472269) supported by the National Natural Science Foundation of ChinaProject(2017JJ3290) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(17C1540) supported by the Scientific Research Foundation of Education Department of Hunan Province,ChinaProject(16GES07) supported by the Open Research Fund of Hunan Key Laboratory of Geomechanics and Engineering Safety,China
文摘The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at the mesoscopic scale, such as loading frequency, stress amplitude, mean stress, confining pressure and loading sequence, are also investigated with sinusoidal waveform in detail. The related numerical results have demonstrated that: 1) the loading waveform has a certain effect on rock failure processes. The square waveform has the most damage within these waveforms, while the triangle waveform has less damage than sinusoidal waveform. In each cycle, the number of microscopic cracks increases in the loading stage, while it keeps nearly constant in the unloading stage. 2) The loading frequency, stress amplitude, mean stress, confining pressure and loading sequence have considerable effects on rock damage subjected to cyclic loading. The higher the loading frequency, stress amplitude and mean stress, the greater the damage the rock accumulated; in contrast, the lower the confining pressure, the greater the damage the rock has accumulated. 3) There is a threshold value of mean stress and stress amplitude, below which no further damage accumulated after the first few cycle loadings. 4) The high-to-low loading sequence has more damage than the low-to-high loading sequence, suggesting that the rock damage is loading-path dependent.
文摘The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.
基金supported by the National Natural Science Foundation grant No.41174034the Major State Basic Research Development Program of China(973 Program)
文摘The waveform inversion method is applied-- using synthetic ocean-bottom seismometer (OBS) data--to study oceanic crust structure. A niching genetic algorithm (NGA) is used to implement the inversion for the thickness and P-wave velocity of each layer, and to update the model by minimizing the objective function, which consists of the misfit and cross-correlation of observed and synthetic waveforms. The influence of specific NGA method parameters is discussed, and suitable values are presented. The NGA method works well for various observation systems, such as those with irregular and sparse distribu- tion of receivers as well as single receiver systems. A strategy is proposed to accelerate the convergence rate by a factor of five with no increase in computational complex- ity; this is achieved using a first inversion with several generations to impose a restriction on the preset range of each parameter and then conducting a second inversion with the new range. Despite the successes of this method, its usage is limited. A shallow water layer is not favored because the direct wave in water will suppress the useful reflection signals from the crust. A more precise calculation of the air-gun source signal should be considered in order to better simulate waveforms generated in realistic situa- tions; further studies are required to investigate this issue.
基金Sponsored by National Science Fund!( 59881 0 0 2 )
文摘By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular waveform and pulsed output wave superimposed on a rectangular waveform on the penetration depth of weld. Research results indicate that the average power, duty cycle, frequency and peak power of rectangular wave affect the weld penetration depth to different extent. Results of experiments and analysis also indicate that the pulse delay time, pulse width and the power ratio of pulse to rectangular waveform seriously influence the penetration when the pulsed wave is superimposed on a rectangular waveform.
文摘Agilent 33200A family of function/arbitrary waveform generators are widely used in labs for creating arbitrary waveforms.Flexible applications of function/arbitrary waveform generator 33250A which is made by Agilent company are expatiated.There are three methods of transferring waveform data to arbitrary waveform generator 33250A,among which,the front panel method can produce a simple interface for arbitrary waveforms and is applicable to the composition of a small amount of linear waveform segment,and the progress of this method is explained in detail.This way is convenient and can be widely used,and it will offer some good guidance in library works.
基金supported by National Natural Science Foundation of China(No.11375040)
文摘Plasma atomic layer etching is proposed to attain layer-by-layer etching, as it has atomic-scale resolution, and can etch monolayer materials. In the etching process, ion energy and angular distributions(IEADs) bombarding the wafer placed on the substrate play a critical role in trench profile evolution, thus importantly flexibly controlling IEADs in the process. Tailored bias voltage waveform is an advisable method to modulate the IEADs effectively, and then improve the trench profile. In this paper, a multi-scale model, coupling the reaction chamber model,sheath model, and trench model, is used to research the effects of bias waveforms on the atomic layer etching of Si in Ar/Cl2 inductively coupled plasmas. Results show that different discharge parameters, such as pressure and radio-frequency power influence the trench evolution progress with bias waveforms synergistically. Tailored bias waveforms can provide nearly monoenergetic ions, thereby obtaining more anisotropic trench profile.???
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB301704)the National Natural Science Foundation of China (Grant Nos. 60901006 and 11174096)the Fundamental Research Funds for the Central Universities of China (Grant No. 2010QN033)
文摘We demonstrate experimentally a radio frequency arbitrary waveform generator using the incoherent wavelength-to-time mapping technique. The system is implemented by amplitude modulation of a broadband optical resource whose spectrum is reshaped by a programmable optical pulse shaper and transmitted over a single mode fiber link. The shape of the generated waveform is controlled by the optical pulse shaper, and the fiber link introduces a certain group velocity delay to implement wavelength-to-time mapping. Assisted by the flexible optical pulse shaper, we obtain different shapes of optical waveforms, such as rectangle, triangle, and sawtooth waveforms. Furthermore, we also demonstrate ultra-wideband generation, such as Gaussian monocycle, doublet, and triplet waveforms, using the incoherent technique.