期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Microseismic event waveform classification using CNN-based transfer learning models 被引量:4
1
作者 Longjun Dong Hongmei Shu +1 位作者 Zheng Tang Xianhang Yan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1203-1216,共14页
The efficient processing of large amounts of data collected by the microseismic monitoring system(MMS),especially the rapid identification of microseismic events in explosions and noise,is essential for mine disaster ... The efficient processing of large amounts of data collected by the microseismic monitoring system(MMS),especially the rapid identification of microseismic events in explosions and noise,is essential for mine disaster prevention.Currently,this work is primarily performed by skilled technicians,which results in severe workloads and inefficiency.In this paper,CNN-based transfer learning combined with computer vision technology was used to achieve automatic recognition and classification of multichannel microseismic signal waveforms.First,data collected by MMS was generated into 6-channel original waveforms based on events.After that,sample data sets of microseismic events,blasts,drillings,and noises were established through manual identification.These datasets were split into training sets and test sets according to a certain proportion,and transfer learning was performed on AlexNet,GoogLeNet,and ResNet50 pre-training network models,respectively.After training and tuning,optimal models were retained and compared with support vector machine classification.Results show that transfer learning models perform well on different test sets.Overall,GoogLeNet performed best,with a recognition accuracy of 99.8%.Finally,the possible effects of the number of training sets and the imbalance of different types of sample data on the accuracy and effectiveness of classification models were discussed. 展开更多
关键词 Mine safety Machine learning Transfer learning Microseismic events waveform classification Image identification and classification
在线阅读 下载PDF
SegNet-based first-break picking via seismic waveform classification directly from shot gathers with sparsely distributed traces 被引量:3
2
作者 San-Yi Yuan Yue Zhao +2 位作者 Tao Xie Jie Qi Shang-Xu Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期162-179,共18页
Manually picking regularly and densely distributed first breaks(FBs)are critical for shallow velocitymodel building in seismic data processing.However,it is time consuming.We employ the fullyconvolutional Seg Net to a... Manually picking regularly and densely distributed first breaks(FBs)are critical for shallow velocitymodel building in seismic data processing.However,it is time consuming.We employ the fullyconvolutional Seg Net to address this issue and present a fast automatic seismic waveform classification method to pick densely-sampled FBs directly from common-shot gathers with sparsely distributed traces.Through feeding a large number of representative shot gathers with missing traces and the corresponding binary labels segmented by manually interpreted fully-sampled FBs,we can obtain a welltrained Seg Net model.When any unseen gather including the one with irregular trace spacing is inputted,the Seg Net can output the probability distribution of different categories for waveform classification.Then FBs can be picked by locating the boundaries between one class on post-FBs data and the other on pre-FBs background.Two land datasets with each over 2000 shots are adopted to illustrate that one well-trained 25-layer Seg Net can favorably classify waveform and further pick fully-sampled FBs verified by the manually-derived ones,even when the proportion of randomly missing traces reaches50%,21 traces are missing consecutively,or traces are missing regularly. 展开更多
关键词 First-break picking Deep learning Irregular seismic data waveform classification
原文传递
Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform 被引量:24
3
作者 DONG Long-jun TANG Zheng +2 位作者 LI Xi-bing CHEN Yong-chao XUE Jin-chun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3078-3089,共12页
Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic ev... Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity. 展开更多
关键词 microseismic monitoring waveform classification microseismic events BLASTS convolutional neural network
在线阅读 下载PDF
Computationally Efficient MUSIC-Based Algorithm for Joint Direction of Arrival (DOA) and Doppler Frequency Estimation in Monostatic MIMO Radar 被引量:2
4
作者 Cao Renzheng Zhang Xiaofei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第6期1053-1063,共11页
The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-... The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm. 展开更多
关键词 MULTIPLE-INPUT multiple-output(MIMO)radar RADAR SIGNAL processing JOINT angle and Doppler frequency estimation multiple SIGNAL classification(MUSIC)waveform generation optical switching
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部