The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or part...The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or partial differential equations, using new methods from Differential Geometry (D.C. Spencer, 1970), Differential Algebra (J.F. Ritt, 1950 and E. Kolchin, 1973) and Algebraic Analysis (M. Kashiwara, 1970). The main idea is to identify the differential indeterminates of Ritt and Kolchin with the jet coordinates of Spencer, in order to study Differential Duality by using only linear differential operators with coefficients in a differential field K. In particular, the linearized second order Einstein operator and the formal adjoint of the Ricci operator are both parametrizing the 4 first order Cauchy stress equations but cannot themselves be parametrized. In the framework of Homological Algebra, this result is not coherent with the vanishing of a certain second extension module and leads to question the proper origin and existence of gravitational waves. As a byproduct, we also prove that gravitation and electromagnetism only depend on the second order jets (called elations by E. Cartan in 1922) of the system of conformal Killing equations because any 1-form with value in the bundle of elations can be decomposed uniquely into the direct sum (R, F) where R is a section of the Ricci bundle of symmetric covariant 2-tensors and the EM field F is a section of the vector bundle of skew-symmetric 2-tensors. No one of these purely mathematical results could have been obtained by any classical approach. Up to the knowledge of the author, it is also the first time that differential algebra in a modern setting is applied to study the specific algebraic feature of most equations to be found in mathematical physics, particularly in GR.展开更多
We have performed sequential studies on new types of soft rubber for their application as artificial skin in robots and haptic sensors. Based on a proposed electrolytic polymerization method and novel adhesion techniq...We have performed sequential studies on new types of soft rubber for their application as artificial skin in robots and haptic sensors. Based on a proposed electrolytic polymerization method and novel adhesion technique for rubber and a metal that utilizes a metal complex hydrate, we have developed an MCF rubber sensor. This sensor uses a magnetic compound fluid (MCF), natural rubber (NR-latex) or chloroprene rubber latex (CR-latex), and requires the application of a magnetic field. The potential application of the developed sensor in various engineering scenarios and our daily lives is significant. In this regard, we investigated the effects of γ-irradiation, infrared radiation, microwaves, and a thermal source on the MCF rubber sensor. We established that the MCF rubber is effective enough to be used for power generation of broadband electro-magnetic waves from γ-rays to microwaves, including the range of the solar spectrum, which is the typical characteristic obtained in the present investigation. The remarkable attribute is that the MCF rubber sensor dose is not degraded by γ-irradiation. We also demonstrated the effectiveness of the MCF rubber sensor in energy harvesting.展开更多
We start from a minimal number of generally accepted premises, in particular Hartle-Hawking quantum wave of the universe and von Neumann-Connes’ pointless and self referential spacetime geometry. We then proceed from...We start from a minimal number of generally accepted premises, in particular Hartle-Hawking quantum wave of the universe and von Neumann-Connes’ pointless and self referential spacetime geometry. We then proceed from there to show, using Dvoretzky’s theorem of measure concentration, that the total energy of the universe is divided into two parts, an ordinary energy very small part which we can measure while most of the energy is concentrated as the second part at the boundary of the holographic boundary which we cannot measure in a direct way. Finally the results are shown to imply a resolution of the black hole information paradox without violating the fundamental laws of physics. In this way the main thrust of the two opposing arguments and views, namely that of Hawking on the one side and Susskind as well as tHooft on the other side, is brought to a consistent and compatible coherent unit.展开更多
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat...This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.展开更多
The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has...The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.展开更多
The manipulation of intense shock waves to either attenuate or enhance damage has long been a key goal in the domain of impact dynamics.Effective methods for such manipulation,however,remain elusive owing to the wide ...The manipulation of intense shock waves to either attenuate or enhance damage has long been a key goal in the domain of impact dynamics.Effective methods for such manipulation,however,remain elusive owing to the wide spectrum and irreversible destructive nature of intense shock waves.This work proposes a novel approach for actively controlling intense shock waves in solids,inspired by the principles of optical and explosive lenses.Specifically,by designing a shock wave convex lens composed of a low-shock-impedance material embedded in a high-shock-impedance matrix,we prove the feasibility of transforming a planar shock into a spherically converging shock.This is based on oblique shock theory,according to which shock waves pass through an oblique interface and then undergo deflection.Both experimental and simulation results demonstrate that,as expected,the obtained local spherical shock wave has a wavefront that is nearly perfectly spherical and uniform in pressure.Thus,this work proves the possibility of generating spherical shock waves using plate-impact experiments and highlights the potential of further exploration of the manipulation of shock waves in solids.It also contributes an innovative perspective for both armor penetration technologies and shock wave mitigation strategies.展开更多
A transformation of the electron states—say those enclosed in a potential box—into the de Broglie waves done in the paper, enabled us to calculate the energy change between two quantum levels as a function of the sp...A transformation of the electron states—say those enclosed in a potential box—into the de Broglie waves done in the paper, enabled us to calculate the energy change between two quantum levels as a function of the specific heat and difference of the temperature between the states. In consequence, the energy difference and that of entropy between the levels could be examined in terms of the appropriate classical parameters. In the next step, the time interval necessary for the electron transition between the levels could be associated with the classical electrodynamical parameters like the electric resistance and capacitance connected with the temporary formation of the electric cell in course of the transition. The parameters characterizing the mechanical inertia of the electron were next used as a check of the electrodynamical formulae referring to transition.展开更多
The ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) data, including all the 3 parts: VNIR (Visible and Near-Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared), were applied for extra...The ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) data, including all the 3 parts: VNIR (Visible and Near-Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared), were applied for extraction of mineral deposits, such as the Ni-Cu deposit in eastern Tianshan, the gypsum in western Tianshan, and the borax in Tibetan. This paper discusses the extraction methodology using the ASTER remote sensing data and reveals the good extraction results. This paper bravely represents the summary of the main achievement for this field by the scientists in other countries and gives a comparison with the works by others. The new achievements, described in this paper, comprise the extraction of anomalies for Ni-Cu deposit, gypsum, and borax.展开更多
In this work, the exp(-φ (ξ )) -expansion method is used for the first time to investigate the exact traveling wave solutions involving parameters of nonlinear evolution equations. When these parameters are taken to...In this work, the exp(-φ (ξ )) -expansion method is used for the first time to investigate the exact traveling wave solutions involving parameters of nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. The validity and reliability of the method are tested by its applications to Nano-ionic solitons wave’s propagation along microtubules in living cells and Nano-ionic currents of MTs which play an important role in biology.展开更多
We reason that in quantum cosmology there are two kinds of energy. The first is the ordinary energy of the quantum particle which we can measure. The second is the dark energy of the quantum wave by quantum duality. B...We reason that in quantum cosmology there are two kinds of energy. The first is the ordinary energy of the quantum particle which we can measure. The second is the dark energy of the quantum wave by quantum duality. Because measurement collapses the Hawking-Hartle quantum wave of the cosmos, dark energy cannot be detected or measured in any conventional manner. The quantitative results are confirmed using some exact solutions for the hydrogen atom. In particular the ordinary energy of the quantum particle is given by E(0) = (/2)(mc2) where is Hardy’s probability of quantum entanglement, =( - 1)/2 is the Hausdorff dimension of the zero measure thin Cantor set modeling the quantum particle, while the dark energy of the quantum wave is given by E(D) = (5/2)(mc2) where is the Hausdorff dimension of the positive measure thick empty Cantor set modeling the quantum wave and the factor five (5) is the Kaluza-Klein spacetime dimension to which the measure zero thin Cantor set D(0) = (0,) and the thick empty set D(-1) = (1,) must be lifted to give the five dimensional analogue sets namely and 5 needed for calculating the energy density E(0) and E(D) which together add to Einstein’s maximal total energy density E(total) = E(0) + E(D) = mc2 = E(Einstein). These results seem to be in complete agreement with the WMAP, supernova and recent Planck cosmic measurement as well as the 2005 quantum gravity experiments of V. V. Nesvizhersky and his associates. It also confirms the equivalence of wormhole solutions of Einstein’s equations and quantum entanglement by scaling the Planck scale.展开更多
Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a ...Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a central field. There, quantum numbers are integral. The half-integral spinor moment appears to be due to cylindrical motion in an external applied magnetic field;when this is zero , the spin states are degenerate. Consider lifting the degeneracy by diamagnetism in the cylindrical magnetic field: a uniquely derived electronic magnetic radius shares the identical value to the Compton wavelength.展开更多
The aim of the present paper is to explain and accurately calculate the missing dark energy density of the cosmos by scaling the Planck scale and using the methodology of the relatively novel discipline of cosmic crys...The aim of the present paper is to explain and accurately calculate the missing dark energy density of the cosmos by scaling the Planck scale and using the methodology of the relatively novel discipline of cosmic crystallography and Hawking-Hartle quantum wave solution of Wheeler-DeWitt equation. Following this road we arrive at a modified version of Einstein’s energy mass relation E = mc2 which predicts a cosmological energy density in astonishing accord with the WMAP and supernova measurements and analysis. We develop non-constructively what may be termed super symmetric Penrose fractal tiling and find that the isomorphic length of this tiling is equal to the self affinity radius of a universe which resembles an 11 dimensional Hilbert cube or a fractal M-theory with a Hausdorff dimension where. It then turns out that the correct maximal quantum relativity energy-mass equation for intergalactic scales is a simple relativistic scaling, in the sense of Weyl-Nottale, of Einstein’s classical equation, namely EQR = (1/2)(1/) moc2 = 0.0450849 mc2 and that this energy is the ordinary measurable energy density of the quantum particle. This means that almost 95.5% of the energy of the cosmos is dark energy which by quantum particle-wave duality is the absolute value of the energy of the quantum wave and is proportional to the square of the curvature of the curled dimension of spacetime namely where and is Hardy’s probability of quantum entanglement. Because of the quantum wave collapse on measurement this energy cannot be measured using our current technologies. The same result is obtained by involving all the 17 Stein spaces corresponding to 17 types of the wallpaper groups as well as the 230-11=219 three dimensional crystallographic group which gives the number of the first level of massless particle-like states in Heterotic string theory. All these diverse subjects find here a unified view point leading to the same result regarding the missing dark energy of the universe, which turned out to by synonymous with the absolute value of the energy of the Hawking-Hartle quantum wave solution of Wheeler-DeWitt equation while ordinary energy is the energy of the quantum particle into which the Hawking-Hartle wave collapse at cosmic energy measurement. In other words it is in the very act of measurement which causes our inability to measure the “Dark energy of the quantum wave” in any direct way. The only hope if any to detect dark energy and utilize it in nuclear reactors is future development of sophisticated quantum wave non-demolition measurement instruments.展开更多
In this work, the extended Jacobian elliptic function expansion method is used as the first time to evaluate the exact traveling wave solutions of nonlinear evolution equations. The validity and reliability of the met...In this work, the extended Jacobian elliptic function expansion method is used as the first time to evaluate the exact traveling wave solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to nano-solitons of ionic waves propagation along microtubules in living cells and nano-ionic currents of MTs which play an important role in biology.展开更多
The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fu...The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fully nonlinear time domain CFD is often considered to be an expensive and computationally intensive option for marine hydrodynamics and frequency-based methods are traditionally preferred by the industry. However, CFD models capture more of the physics of wave-structure interaction, and whereas traditional frequency domain approaches are restricted to linear motions, fully nonlinear CFD can simulate wave breaking and overtopping. Furthermore, with continuing advances in computing power and speed and the development of new algorithms for CFD, it is becoming a more popular option for design applications in the marine environment. In this work, different CFD approaches of increasing novelty are assessed: two commercial CFD packages incorporating recent advances in high resolution free surface flow simulation;a finite volume based Euler equation model with a shock capturing technique for the free surface;and meshless Smoothed Particle Hydrodynamics (SPH) method. These different approaches to fully nonlinear time domain simulation of free surface flow and wave structure interaction are applied to test cases of increasing complexity and the results compared with experimental data. Results are presented for regular wave interaction with a fixed horizontal cylinder, wave generation by a cone in driven vertical motion at the free surface and extreme wave interaction with a bobbing float (The Manchester Bobber WEC). The numerical results generally show good agreement with the physical experiments and simulate the wave-structure interaction and wave loading satisfactorily. The grid-based methods are shown to be generally less able than the meshless SPH to capture jet formation at the face of the cone, the resolution of the jet being grid dependent.展开更多
Significant wave period is an important parameter in coastal and offshore engineering design.Traditional spectral wave models do not directly calculate this parameter,which means that it needs to be estimated from the...Significant wave period is an important parameter in coastal and offshore engineering design.Traditional spectral wave models do not directly calculate this parameter,which means that it needs to be estimated from the spectral periods using empirical formulas.The wave energy period is one of the wave periods directly output by many wave models and is often used in studies of wave energy.This study investigated the relationship between significant wave period and wave energy period using wave data measured at three stations in the coastal waters of China.The observations recorded at these stations in the South China Sea,the East China Sea,and the Bohai Sea covered a wide range of surface wave conditions.Analysis indicated that the ratio of significant wave period to wave energy period is closely related to the Goda peakedness parameter of the wave spectra.Therefore,we proposed an empirical formula in which significant wave period is a function of wave energy period and the Goda peakedness parameter.Evaluation results showed that the performance of this formula is substantially better than that of fitting formulas that use constant coefficients.展开更多
This paper provides an overview of the global wave resource for energy exploration.The most popular metrics and estimators for wave energy resource characterization have been compiled and classified by levels of energ...This paper provides an overview of the global wave resource for energy exploration.The most popular metrics and estimators for wave energy resource characterization have been compiled and classified by levels of energy exploration.A review of existing prospective wave energy resource assessments worldwide is also given,and those studies have been collated and classified by continent.Finally,information about forty existing open sea wave energy test sites worldwide and their characteristics is depicted and displayed on a newly created global map.It has been found that wave power density is still the most consensual metric used for wave energy resource assessment purposes among researchers.Nonetheless,to accomplish a comprehensive wave resource assessment for exploitation,the computation of other metrics at the practicable,technical,and socio-economic levels has also been performed at both spatial and temporal domains.Overall,regions in latitudes between 40°and 60°of both hemispheres are those where the highest wave power density is concentrated.Some areas where the most significant wave power density occurs are in offshore regions of southern Australia,New Zealand,South Africa,Chile,the British Isles,Iceland,and Greenland.However,Europe has been the continent where most research efforts have been done targeting wave energy characterisation for exploitation.展开更多
We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the densit...We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the density zeros of the nonlinear waves on the extended complex plane constitute the virtual monopole fields with a quantized flux of elementary π. We then explain the exotic properties of rogue waves by means of a virtual monopole collision mechanism and find that the maximum amplitude amplification ratio and multiple phase steps of the high-order rogue waves are closely related to the number of their contained monopoles. These results open a new avenue for studying topological properties of nonlinear waves and provide an alternative way to understand their dynamics.展开更多
Scalar fields should have no spin angular momentum according to conventional textbook understandings inclassical field theory.Yet,recent studies demonstrate the undoubted existence of wave spin endowed by acousticand ...Scalar fields should have no spin angular momentum according to conventional textbook understandings inclassical field theory.Yet,recent studies demonstrate the undoubted existence of wave spin endowed by acousticand elastic longitudinal waves,which are of irrotational curl-free nature without vorticity and can be describedby scalar fields.Moreover,the conventional theory cannot even answer the question of whether wave spin existsin dissipative fields,given the ubiquitous dissipation in reality.Here,to resolve the seeming paradox and answerthe challenging question,we uncover the origin of wave spin in scalar fields beyond traditional formalism byclarifying that the presence of higher-order derivatives in scalar field Lagrangians can give rise to non-vanishingwave spin.For“spinless”scalar fields of only first-order derivatives,we can make the hidden wave spin emergeby revealing a latent field that leads to the original field through a time derivative,thus giving higher-order termsin Lagrangian.Based on the standard Noether theorem approach,we exemplify the wave spin for unconventionaldrifted acoustic fields,and even for dissipative media,in scalar fields with higher-order derivative Lagrangian.The results would prompt people to build more comprehensive and fundamental understandings of structuralwave spin in classical fields.展开更多
In order to get the exact traveling wave solutions to nonlinear partial differential equation, the complete discrimination system for polynomial and direct integral method are applied to the considered equation. All s...In order to get the exact traveling wave solutions to nonlinear partial differential equation, the complete discrimination system for polynomial and direct integral method are applied to the considered equation. All single traveling wave solutions to the equation can be obtained. As an example, we give the solutions to (3 + 1)-dimensional breaking soliton equation.展开更多
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
文摘The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or partial differential equations, using new methods from Differential Geometry (D.C. Spencer, 1970), Differential Algebra (J.F. Ritt, 1950 and E. Kolchin, 1973) and Algebraic Analysis (M. Kashiwara, 1970). The main idea is to identify the differential indeterminates of Ritt and Kolchin with the jet coordinates of Spencer, in order to study Differential Duality by using only linear differential operators with coefficients in a differential field K. In particular, the linearized second order Einstein operator and the formal adjoint of the Ricci operator are both parametrizing the 4 first order Cauchy stress equations but cannot themselves be parametrized. In the framework of Homological Algebra, this result is not coherent with the vanishing of a certain second extension module and leads to question the proper origin and existence of gravitational waves. As a byproduct, we also prove that gravitation and electromagnetism only depend on the second order jets (called elations by E. Cartan in 1922) of the system of conformal Killing equations because any 1-form with value in the bundle of elations can be decomposed uniquely into the direct sum (R, F) where R is a section of the Ricci bundle of symmetric covariant 2-tensors and the EM field F is a section of the vector bundle of skew-symmetric 2-tensors. No one of these purely mathematical results could have been obtained by any classical approach. Up to the knowledge of the author, it is also the first time that differential algebra in a modern setting is applied to study the specific algebraic feature of most equations to be found in mathematical physics, particularly in GR.
文摘We have performed sequential studies on new types of soft rubber for their application as artificial skin in robots and haptic sensors. Based on a proposed electrolytic polymerization method and novel adhesion technique for rubber and a metal that utilizes a metal complex hydrate, we have developed an MCF rubber sensor. This sensor uses a magnetic compound fluid (MCF), natural rubber (NR-latex) or chloroprene rubber latex (CR-latex), and requires the application of a magnetic field. The potential application of the developed sensor in various engineering scenarios and our daily lives is significant. In this regard, we investigated the effects of γ-irradiation, infrared radiation, microwaves, and a thermal source on the MCF rubber sensor. We established that the MCF rubber is effective enough to be used for power generation of broadband electro-magnetic waves from γ-rays to microwaves, including the range of the solar spectrum, which is the typical characteristic obtained in the present investigation. The remarkable attribute is that the MCF rubber sensor dose is not degraded by γ-irradiation. We also demonstrated the effectiveness of the MCF rubber sensor in energy harvesting.
文摘We start from a minimal number of generally accepted premises, in particular Hartle-Hawking quantum wave of the universe and von Neumann-Connes’ pointless and self referential spacetime geometry. We then proceed from there to show, using Dvoretzky’s theorem of measure concentration, that the total energy of the universe is divided into two parts, an ordinary energy very small part which we can measure while most of the energy is concentrated as the second part at the boundary of the holographic boundary which we cannot measure in a direct way. Finally the results are shown to imply a resolution of the black hole information paradox without violating the fundamental laws of physics. In this way the main thrust of the two opposing arguments and views, namely that of Hawking on the one side and Susskind as well as tHooft on the other side, is brought to a consistent and compatible coherent unit.
文摘This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.
文摘The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3802303)the National Natural Science Foundation of China(Grant Nos.12302493 and 12525211).
文摘The manipulation of intense shock waves to either attenuate or enhance damage has long been a key goal in the domain of impact dynamics.Effective methods for such manipulation,however,remain elusive owing to the wide spectrum and irreversible destructive nature of intense shock waves.This work proposes a novel approach for actively controlling intense shock waves in solids,inspired by the principles of optical and explosive lenses.Specifically,by designing a shock wave convex lens composed of a low-shock-impedance material embedded in a high-shock-impedance matrix,we prove the feasibility of transforming a planar shock into a spherically converging shock.This is based on oblique shock theory,according to which shock waves pass through an oblique interface and then undergo deflection.Both experimental and simulation results demonstrate that,as expected,the obtained local spherical shock wave has a wavefront that is nearly perfectly spherical and uniform in pressure.Thus,this work proves the possibility of generating spherical shock waves using plate-impact experiments and highlights the potential of further exploration of the manipulation of shock waves in solids.It also contributes an innovative perspective for both armor penetration technologies and shock wave mitigation strategies.
文摘A transformation of the electron states—say those enclosed in a potential box—into the de Broglie waves done in the paper, enabled us to calculate the energy change between two quantum levels as a function of the specific heat and difference of the temperature between the states. In consequence, the energy difference and that of entropy between the levels could be examined in terms of the appropriate classical parameters. In the next step, the time interval necessary for the electron transition between the levels could be associated with the classical electrodynamical parameters like the electric resistance and capacitance connected with the temporary formation of the electric cell in course of the transition. The parameters characterizing the mechanical inertia of the electron were next used as a check of the electrodynamical formulae referring to transition.
文摘The ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) data, including all the 3 parts: VNIR (Visible and Near-Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared), were applied for extraction of mineral deposits, such as the Ni-Cu deposit in eastern Tianshan, the gypsum in western Tianshan, and the borax in Tibetan. This paper discusses the extraction methodology using the ASTER remote sensing data and reveals the good extraction results. This paper bravely represents the summary of the main achievement for this field by the scientists in other countries and gives a comparison with the works by others. The new achievements, described in this paper, comprise the extraction of anomalies for Ni-Cu deposit, gypsum, and borax.
文摘In this work, the exp(-φ (ξ )) -expansion method is used for the first time to investigate the exact traveling wave solutions involving parameters of nonlinear evolution equations. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. The validity and reliability of the method are tested by its applications to Nano-ionic solitons wave’s propagation along microtubules in living cells and Nano-ionic currents of MTs which play an important role in biology.
文摘We reason that in quantum cosmology there are two kinds of energy. The first is the ordinary energy of the quantum particle which we can measure. The second is the dark energy of the quantum wave by quantum duality. Because measurement collapses the Hawking-Hartle quantum wave of the cosmos, dark energy cannot be detected or measured in any conventional manner. The quantitative results are confirmed using some exact solutions for the hydrogen atom. In particular the ordinary energy of the quantum particle is given by E(0) = (/2)(mc2) where is Hardy’s probability of quantum entanglement, =( - 1)/2 is the Hausdorff dimension of the zero measure thin Cantor set modeling the quantum particle, while the dark energy of the quantum wave is given by E(D) = (5/2)(mc2) where is the Hausdorff dimension of the positive measure thick empty Cantor set modeling the quantum wave and the factor five (5) is the Kaluza-Klein spacetime dimension to which the measure zero thin Cantor set D(0) = (0,) and the thick empty set D(-1) = (1,) must be lifted to give the five dimensional analogue sets namely and 5 needed for calculating the energy density E(0) and E(D) which together add to Einstein’s maximal total energy density E(total) = E(0) + E(D) = mc2 = E(Einstein). These results seem to be in complete agreement with the WMAP, supernova and recent Planck cosmic measurement as well as the 2005 quantum gravity experiments of V. V. Nesvizhersky and his associates. It also confirms the equivalence of wormhole solutions of Einstein’s equations and quantum entanglement by scaling the Planck scale.
文摘Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a central field. There, quantum numbers are integral. The half-integral spinor moment appears to be due to cylindrical motion in an external applied magnetic field;when this is zero , the spin states are degenerate. Consider lifting the degeneracy by diamagnetism in the cylindrical magnetic field: a uniquely derived electronic magnetic radius shares the identical value to the Compton wavelength.
文摘The aim of the present paper is to explain and accurately calculate the missing dark energy density of the cosmos by scaling the Planck scale and using the methodology of the relatively novel discipline of cosmic crystallography and Hawking-Hartle quantum wave solution of Wheeler-DeWitt equation. Following this road we arrive at a modified version of Einstein’s energy mass relation E = mc2 which predicts a cosmological energy density in astonishing accord with the WMAP and supernova measurements and analysis. We develop non-constructively what may be termed super symmetric Penrose fractal tiling and find that the isomorphic length of this tiling is equal to the self affinity radius of a universe which resembles an 11 dimensional Hilbert cube or a fractal M-theory with a Hausdorff dimension where. It then turns out that the correct maximal quantum relativity energy-mass equation for intergalactic scales is a simple relativistic scaling, in the sense of Weyl-Nottale, of Einstein’s classical equation, namely EQR = (1/2)(1/) moc2 = 0.0450849 mc2 and that this energy is the ordinary measurable energy density of the quantum particle. This means that almost 95.5% of the energy of the cosmos is dark energy which by quantum particle-wave duality is the absolute value of the energy of the quantum wave and is proportional to the square of the curvature of the curled dimension of spacetime namely where and is Hardy’s probability of quantum entanglement. Because of the quantum wave collapse on measurement this energy cannot be measured using our current technologies. The same result is obtained by involving all the 17 Stein spaces corresponding to 17 types of the wallpaper groups as well as the 230-11=219 three dimensional crystallographic group which gives the number of the first level of massless particle-like states in Heterotic string theory. All these diverse subjects find here a unified view point leading to the same result regarding the missing dark energy of the universe, which turned out to by synonymous with the absolute value of the energy of the Hawking-Hartle quantum wave solution of Wheeler-DeWitt equation while ordinary energy is the energy of the quantum particle into which the Hawking-Hartle wave collapse at cosmic energy measurement. In other words it is in the very act of measurement which causes our inability to measure the “Dark energy of the quantum wave” in any direct way. The only hope if any to detect dark energy and utilize it in nuclear reactors is future development of sophisticated quantum wave non-demolition measurement instruments.
文摘In this work, the extended Jacobian elliptic function expansion method is used as the first time to evaluate the exact traveling wave solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to nano-solitons of ionic waves propagation along microtubules in living cells and nano-ionic currents of MTs which play an important role in biology.
文摘The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fully nonlinear time domain CFD is often considered to be an expensive and computationally intensive option for marine hydrodynamics and frequency-based methods are traditionally preferred by the industry. However, CFD models capture more of the physics of wave-structure interaction, and whereas traditional frequency domain approaches are restricted to linear motions, fully nonlinear CFD can simulate wave breaking and overtopping. Furthermore, with continuing advances in computing power and speed and the development of new algorithms for CFD, it is becoming a more popular option for design applications in the marine environment. In this work, different CFD approaches of increasing novelty are assessed: two commercial CFD packages incorporating recent advances in high resolution free surface flow simulation;a finite volume based Euler equation model with a shock capturing technique for the free surface;and meshless Smoothed Particle Hydrodynamics (SPH) method. These different approaches to fully nonlinear time domain simulation of free surface flow and wave structure interaction are applied to test cases of increasing complexity and the results compared with experimental data. Results are presented for regular wave interaction with a fixed horizontal cylinder, wave generation by a cone in driven vertical motion at the free surface and extreme wave interaction with a bobbing float (The Manchester Bobber WEC). The numerical results generally show good agreement with the physical experiments and simulate the wave-structure interaction and wave loading satisfactorily. The grid-based methods are shown to be generally less able than the meshless SPH to capture jet formation at the face of the cone, the resolution of the jet being grid dependent.
基金The National Natural Science Foundation of China under contract No.41821004the Basic Scientific Fund for National Public Research Institutes of China under contract No.2020Q08the Fund of Laoshan Laboratory under contract No.LSKJ202201600.
文摘Significant wave period is an important parameter in coastal and offshore engineering design.Traditional spectral wave models do not directly calculate this parameter,which means that it needs to be estimated from the spectral periods using empirical formulas.The wave energy period is one of the wave periods directly output by many wave models and is often used in studies of wave energy.This study investigated the relationship between significant wave period and wave energy period using wave data measured at three stations in the coastal waters of China.The observations recorded at these stations in the South China Sea,the East China Sea,and the Bohai Sea covered a wide range of surface wave conditions.Analysis indicated that the ratio of significant wave period to wave energy period is closely related to the Goda peakedness parameter of the wave spectra.Therefore,we proposed an empirical formula in which significant wave period is a function of wave energy period and the Goda peakedness parameter.Evaluation results showed that the performance of this formula is substantially better than that of fitting formulas that use constant coefficients.
文摘This paper provides an overview of the global wave resource for energy exploration.The most popular metrics and estimators for wave energy resource characterization have been compiled and classified by levels of energy exploration.A review of existing prospective wave energy resource assessments worldwide is also given,and those studies have been collated and classified by continent.Finally,information about forty existing open sea wave energy test sites worldwide and their characteristics is depicted and displayed on a newly created global map.It has been found that wave power density is still the most consensual metric used for wave energy resource assessment purposes among researchers.Nonetheless,to accomplish a comprehensive wave resource assessment for exploitation,the computation of other metrics at the practicable,technical,and socio-economic levels has also been performed at both spatial and temporal domains.Overall,regions in latitudes between 40°and 60°of both hemispheres are those where the highest wave power density is concentrated.Some areas where the most significant wave power density occurs are in offshore regions of southern Australia,New Zealand,South Africa,Chile,the British Isles,Iceland,and Greenland.However,Europe has been the continent where most research efforts have been done targeting wave energy characterisation for exploitation.
基金supported by the National Natural Science Foundation of China (Grant Nos.12375005,12022513,and12235007)the National Safety Academic Fund(Grant No.U2330401)。
文摘We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the density zeros of the nonlinear waves on the extended complex plane constitute the virtual monopole fields with a quantized flux of elementary π. We then explain the exotic properties of rogue waves by means of a virtual monopole collision mechanism and find that the maximum amplitude amplification ratio and multiple phase steps of the high-order rogue waves are closely related to the number of their contained monopoles. These results open a new avenue for studying topological properties of nonlinear waves and provide an alternative way to understand their dynamics.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1404400 and 2023YFA1406900)the Natural Science Foundation of Shanghai(Grant No.23ZR1481200)the Program of Shanghai Academic Research Leader(Grant No.23XD1423800)。
文摘Scalar fields should have no spin angular momentum according to conventional textbook understandings inclassical field theory.Yet,recent studies demonstrate the undoubted existence of wave spin endowed by acousticand elastic longitudinal waves,which are of irrotational curl-free nature without vorticity and can be describedby scalar fields.Moreover,the conventional theory cannot even answer the question of whether wave spin existsin dissipative fields,given the ubiquitous dissipation in reality.Here,to resolve the seeming paradox and answerthe challenging question,we uncover the origin of wave spin in scalar fields beyond traditional formalism byclarifying that the presence of higher-order derivatives in scalar field Lagrangians can give rise to non-vanishingwave spin.For“spinless”scalar fields of only first-order derivatives,we can make the hidden wave spin emergeby revealing a latent field that leads to the original field through a time derivative,thus giving higher-order termsin Lagrangian.Based on the standard Noether theorem approach,we exemplify the wave spin for unconventionaldrifted acoustic fields,and even for dissipative media,in scalar fields with higher-order derivative Lagrangian.The results would prompt people to build more comprehensive and fundamental understandings of structuralwave spin in classical fields.
文摘In order to get the exact traveling wave solutions to nonlinear partial differential equation, the complete discrimination system for polynomial and direct integral method are applied to the considered equation. All single traveling wave solutions to the equation can be obtained. As an example, we give the solutions to (3 + 1)-dimensional breaking soliton equation.