In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their ...In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their barrier properties. Oxygen (O2) and hexamethyl- disiloxane (HMDSO) were employed as oxidant gas and Si monomer during SiOx deposition, re- spectively. Analysis by Fourier transform infrared spectroscope (FTIR) for chemical structure and observation by atomic force microscopy (AFM) for surface morphology of SiO~ coatings demon- strated that both chemical compounds and surface feature of coatings have a remarkable influence on the coating barrier properties. It is noted that the processing parameters play a critical role in the barrier properties of coatings. After optimization of the SiOx coatings deposition conditions, i.e. the discharge power of 1500 W, 2 : 1 of O2 : HMDSO ratio and working pressure of 20 Pa, a better barrier property was achieved in this work.展开更多
Catalyst-free graphene films has been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) using hydrogenated carbon source on silicon substrates at low temperature (500℃). The synt...Catalyst-free graphene films has been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) using hydrogenated carbon source on silicon substrates at low temperature (500℃). The synthesized process is simple, low-cost and possible for application on transparent electrodes, gas sensors and thin film resistors. Analytical methods such as Raman spectroscopy, transmission electron microscopy (TEM) and four points prove resistivity measurement and UV-VIS-NIR spectroscopy were employed to characterize properties of the graphene films. The formation of multilayer of graphene on silicon substrate was confirmed by Raman spectroscopy and TEM. It is possible to grow graphene directly on silicon substrate (without using catalyst) due to high radical density of MW SWP CVD. In addition, we also observed that the hydrogen had significant role for quality of graphene.展开更多
The rate of change of wave surface elevation is of much importance in ocean engineering, especially for the determination of the limitation of wave breaking. This paper gives a kind of joint distribution of wave perio...The rate of change of wave surface elevation is of much importance in ocean engineering, especially for the determination of the limitation of wave breaking. This paper gives a kind of joint distribution of wave periods and the rate of change of wave surface elevation by means of calculation of the two-order to four-order moment of the frequency spectrum based on the linear wave theory. For the first time, the distribution density function of wave periods determined by peaks is provided, and the conclusion is drawn that the rate of change of wave surface elevation obeys the Rayleigh distribution.展开更多
On the basis of the linear model of random sea waves presented by Longuet-Higgins,the statistical distribution of the horizontal velocities of water particles at wave surface maxima is derived theoretically.The derive...On the basis of the linear model of random sea waves presented by Longuet-Higgins,the statistical distribution of the horizontal velocities of water particles at wave surface maxima is derived theoretically.The derived distribution is similar to that of wave surface maxima,and a new spectral width epsilon(u),which is defined as(1-m(3)(2)/m(2)m(4))(1/2),is introduced in the distribution.When epsilon(u)tends to zero,the distribution is reduced to Rayleigh distribution and it is reduced to the normal distribution when epsilon(u)tends to unity.For a narrow spectrum,it is proved that epsilon is equal to 1/2 epsilon,where epsilon is(1-m(2)(2)/m(0)m(4))(1/2)and is the commonly used spectral width.展开更多
The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications ...The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications in the mid to low-frequency range of gigahertz.In this study,we prepared Z-type Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites using the sol-gel auto-combustion method.By changing the ratio of Co and Zn ions,the magnetocrystalline anisotropy of ferrite is further ma-nipulated,resulting in significant changes in their magnetic resonance frequency and intensity.Ba_(3)Zn_(1.6)Cu_(0.4)Fe_(24)O_(41)with high-frequency resonance achieved the lowest reflectivity of−72.18 dB at 15.56 GHz,while Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)with stronger loss obtained the widest bandwidth of 4.93 GHz(6.14-11.07).Additionally,we investigated surface wave suppression properties previously overlooked.Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)can achieve a larger attenuation at low frequency under low thickness,which has an excellent effect on reducing backscattering.This work provides a useful reference for the preparation and application of high-performance magnetic-loss materials.展开更多
On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low e...On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.展开更多
We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when...We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when continuous SAW or pulsed SAW were applied and obtained H_(EB).With continuous SAW,the H_(EB)decreases continuously with power.While in the case of pulsed SAW,the H_(EB)first decreases and then stabilizes.Compared to pulsed SAW,the thermal effects from the continuous SAW lead to the continuous decrease of H_(EB)at higher SAW power,which is verified by the measurement of H_(EB)at different temperatures and input currents.Furthermore,our results show that pulsed SAW can effectively avoid thermal effects.The decrease of H_(EB)at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field,which leads to a small perturbation in the magnetic moment of the FM layer.Combined with the AMR values measured at different angles during the saturation field,we believe that the SAW-induced dynamic strain field causes a 15°angle between the magnetic moment and the easy axis.Our experiments provide a different approach to manipulating H_(EB),opening up a potential avenue for future manipulation of antiferromagnetic moments.展开更多
Topological insulators with localized edge or interface states have been extensively studied,particularly in phononic crystals and related fields;however,their application in seismic metamaterials remains largely unex...Topological insulators with localized edge or interface states have been extensively studied,particularly in phononic crystals and related fields;however,their application in seismic metamaterials remains largely unexplored.To address this gap,we designed a topological seismic metamaterial,where the topological interface is formed by joining the ends of two distinct one-dimensional periodic lattices.The first full-scale field experiment confirms the existence of topological interface states,which exhibit pronounced localization characteristics and induce a resonant amplification effect of 7.2 dB on the total energy of seismic surface waves.This study provides the first experimental validation for the implementation of topological principles in the design of seismic metamaterials,enabling novel approaches to high-sensitivity seismic detection and efficient energy localization for wave control.展开更多
Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,an...Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.展开更多
In this paper,we develop a new and effective multiple scale and strongly directional method for identifying and suppressing ground roll based on the second generation curvelet transform.Making the best use of the curv...In this paper,we develop a new and effective multiple scale and strongly directional method for identifying and suppressing ground roll based on the second generation curvelet transform.Making the best use of the curvelet transform's strong local directional characteristics,seismic frequency bands are transformed into scale data with and without noise.Since surface waves and primary reflected waves have less overlap in the curvelet domain,we can effectively identify and separate noise.Applying this method to prestack seismic data can successfully remove surface waves and,at the same time,protect the reflected events well,particularly in the low-frequency band.This indicates that the method described in this paper is an effective and amplitude-preserving method.展开更多
Laboratory experiments are conducted to study the probability distribution of surface elevation for wind waves and the convergence is discussed of the Gram-Charlier series in describing the surface elevation distribut...Laboratory experiments are conducted to study the probability distribution of surface elevation for wind waves and the convergence is discussed of the Gram-Charlier series in describing the surface elevation distribution. Results show that the agreement between the Gram-Charlier series and the observed distribution becomes better and better as the truncated order of the series increases in a certain range, which is contrary to the phenomenon observed by Huang and Long (1980). It is also shown that the Gram-Charlier series is sensitive to the anomalies in the data set which will make the agreement worse if they are not preprocessed appropriately. Negative values of the probability distribution expressed by the Gram-Charlier series in some ranges of surface elevations are discussed, but the absolute values of the negative values as well as the ranges of their occurrence become smaller gradually as more and mote terms are included. Therefore the negative values will have no evident effect on the form of the whole surface elevation distribution when the series is truncated at higher orders. Furthermore, a simple recurrence formula is obtained to calculate the coefficients of the Gram-Charlier series in order to extend the Gram-Charlier series to high orders conveniently.展开更多
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the Chin...We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust.展开更多
An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a ten...An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-13 method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.展开更多
High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise a...High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise and earthquake surface wave tomography, and great improvements in data coverage from dense portable array stations deployed in SE Tibet. In this review paper, I first give a brief overview of the tomographic methods from ambient noise and earthquake surface waves, and then summarize the major findings about the lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography as well as by other seismic and geophysical observations. These findings mainly include the 3-D distribution of mechanically weak zones in the mid-lower crust, lateral and vertical variations in radial and azimuthal anisotropy, possible interplay of some fault zones with crustal weak zones, and importance of strike-slip faulting on upper crustal deformation. These results suggest that integration of block extrusion in the more rigid upper-middle crust and channel flow in the more ductile mid-lower crust will be more compatible with the current geophysical observations. Finally I discuss some future perspective researches in SE Tibet, including array-based tomography, joint inversion using multiple seismic data, and integration of geodynamic modeling and seismic observations.展开更多
We present a 3D model of shear velocity of crust and upper mantle in China and surrounding regions from surface wave tomography. We combine dispersion measurements from ambient noise correlation and traditional earthq...We present a 3D model of shear velocity of crust and upper mantle in China and surrounding regions from surface wave tomography. We combine dispersion measurements from ambient noise correlation and traditional earthquake data. The stations include the China National Seismic Network, global networks, and all the available PASSCAL stations in the region over the years. The combined data sets provide excellent data coverage of the region for surface wave measurements from 8 to 120 s, which are used to invert for 3D shear wave velocity structure of the crust and upper mantle down to about 150 kin. We also derive new models of the study region for crustal thickness and averaged S velocities for upper, mid, and lower crust and the uppermost mantle. The models provide a fundamental data set for understanding continental dynamics and evolution. The tomography results reveal significant features of crust and upper mantle structure, including major basins, Moho depth variation, mantle velocity contrast between eastern and western North China Craton, widespread low-velocity zone in mid- crust in much of the Tibetan Plateau, and clear velocity contrasts of the mantle lithosphere between north and southern Tibet with significant E-W variations. The low velocity structure in the upper mantle under north and eastern TP correlates with surface geological boundaries. A patch of high velocity anomaly is found under the eastern part of the TP, which may indicate intact mantle lithosphere. Mantle lithosphere change from the western to The Tanlu Fault appears boundary. shows striking systematic eastern North China Craton. to be a major lithosphere展开更多
Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling i...Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.展开更多
Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface...Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface waves.To test the feasibility of DAS in shallow structure imaging,the PoroTomo team conducted a DAS experiment with the vibroseis truck T-Rex in Brady’s Hot Springs, Nevada, USA.The Rayleigh waves excited by the vertical mode of the vibroseis truck were analyzed with the Multichannel Analysis of Surface Waves(MASW) method. Phase velocities between5 and 20 Hz were successfully extracted for one segment of cable and were employed to build a shear-wave velocity model for the top 50 meters. The dispersion curves obtained with DAS agree well with the ones extracted from co-located geophones data and from the passive source Noise Correlation Functions(NCF). Comparing to the co-located geophone array, the higher sensor density that DAS arrays provides help reducing aliasing in dispersion analysis, and separating different surface wave modes. This study demonstrates the feasibility and advantage of DAS in imaging shallow structure with surface waves.展开更多
As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the ...As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.展开更多
An eigen-function expansion method based on a new orthogonal inner product is proposed by Sahoo et al. (2000) for the study of the hydroelastic response of mat-type VLFS in head seas. However, their main emphasis is o...An eigen-function expansion method based on a new orthogonal inner product is proposed by Sahoo et al. (2000) for the study of the hydroelastic response of mat-type VLFS in head seas. However, their main emphasis is on the effect of edge conditions and they assume that the plate is of a semi-infinite length. In reality, the plate is of finite length. For consideration of the finite length effect, the reflection and transmission from the other end must be considered. The effect of this reflection and transmission on the hydroelastic response of VLFS is of interest for practical application. Furthermore, the physical meaning of the new inner product was not given in their paper. In this paper, it is shown that the new inner product can he derived from the governing equation and the bottom boundary conditions. Then the same eigen-function expansion method is adopted for the study of the hydroelastic response of an elastic plate of finite length in surface waves. Detailed comparisons are made between the present finite length model and the semi-infinite model and between the present model predictions and the experimental results. It is found that that the finite length effect is significant and the accuracy of present model is higher than the semi-infinite model. Furthermore, a new phenomenon, which is not mentioned in Sahoo et al. (2000), is found. Taht is, for larger L/h ratios, the reflection and transmission coefficients will oscillate with the non-dimensional parameter k(0) h. Further study is needed for full understanding of this phenomenon.展开更多
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced c...The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.展开更多
基金supported financially by National Natural Science Foundation of China(Nos.1117502411375031)+8 种基金Beijing Natural Science Foundation(No.1112012)the National Science & Technology Pillar Program for the 12th Five-year Plan2011BAD24B01Beijing Education Committee Foundation of Science and Technology(Nos.KM2011100015008KM201010015005)BIGC Key Project(No.23190113051)PHR20110516PHR201107145Fujian Provincial Department of Science and Technology Key Project of China(No.2012H0008)
文摘In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their barrier properties. Oxygen (O2) and hexamethyl- disiloxane (HMDSO) were employed as oxidant gas and Si monomer during SiOx deposition, re- spectively. Analysis by Fourier transform infrared spectroscope (FTIR) for chemical structure and observation by atomic force microscopy (AFM) for surface morphology of SiO~ coatings demon- strated that both chemical compounds and surface feature of coatings have a remarkable influence on the coating barrier properties. It is noted that the processing parameters play a critical role in the barrier properties of coatings. After optimization of the SiOx coatings deposition conditions, i.e. the discharge power of 1500 W, 2 : 1 of O2 : HMDSO ratio and working pressure of 20 Pa, a better barrier property was achieved in this work.
文摘Catalyst-free graphene films has been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) using hydrogenated carbon source on silicon substrates at low temperature (500℃). The synthesized process is simple, low-cost and possible for application on transparent electrodes, gas sensors and thin film resistors. Analytical methods such as Raman spectroscopy, transmission electron microscopy (TEM) and four points prove resistivity measurement and UV-VIS-NIR spectroscopy were employed to characterize properties of the graphene films. The formation of multilayer of graphene on silicon substrate was confirmed by Raman spectroscopy and TEM. It is possible to grow graphene directly on silicon substrate (without using catalyst) due to high radical density of MW SWP CVD. In addition, we also observed that the hydrogen had significant role for quality of graphene.
基金National Natural Science Foundation of China.(No.49776285)
文摘The rate of change of wave surface elevation is of much importance in ocean engineering, especially for the determination of the limitation of wave breaking. This paper gives a kind of joint distribution of wave periods and the rate of change of wave surface elevation by means of calculation of the two-order to four-order moment of the frequency spectrum based on the linear wave theory. For the first time, the distribution density function of wave periods determined by peaks is provided, and the conclusion is drawn that the rate of change of wave surface elevation obeys the Rayleigh distribution.
基金financially supported by the National Natural Science Foundation of China.(No.49676274)
文摘On the basis of the linear model of random sea waves presented by Longuet-Higgins,the statistical distribution of the horizontal velocities of water particles at wave surface maxima is derived theoretically.The derived distribution is similar to that of wave surface maxima,and a new spectral width epsilon(u),which is defined as(1-m(3)(2)/m(2)m(4))(1/2),is introduced in the distribution.When epsilon(u)tends to zero,the distribution is reduced to Rayleigh distribution and it is reduced to the normal distribution when epsilon(u)tends to unity.For a narrow spectrum,it is proved that epsilon is equal to 1/2 epsilon,where epsilon is(1-m(2)(2)/m(0)m(4))(1/2)and is the commonly used spectral width.
基金supported by the National Natural Science Foundation of China(No.62371222)the Defense Industrial Technology Development Program(No.JCKY2023605C002)thePriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD202305).
文摘The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications in the mid to low-frequency range of gigahertz.In this study,we prepared Z-type Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites using the sol-gel auto-combustion method.By changing the ratio of Co and Zn ions,the magnetocrystalline anisotropy of ferrite is further ma-nipulated,resulting in significant changes in their magnetic resonance frequency and intensity.Ba_(3)Zn_(1.6)Cu_(0.4)Fe_(24)O_(41)with high-frequency resonance achieved the lowest reflectivity of−72.18 dB at 15.56 GHz,while Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)with stronger loss obtained the widest bandwidth of 4.93 GHz(6.14-11.07).Additionally,we investigated surface wave suppression properties previously overlooked.Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)can achieve a larger attenuation at low frequency under low thickness,which has an excellent effect on reducing backscattering.This work provides a useful reference for the preparation and application of high-performance magnetic-loss materials.
基金the financial support from National Natural Science Foundation of China (Nos. 62192771, 12374344, 12221004)National Key Research and Development Program of China (2022YFA1204700, 2020YFA0710100)+1 种基金Natural Science Foundation of Shanghai (Grant No. 23dz2260100)China Postdoctoral Science Foundation 2021TQ0077
文摘On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174166 and 12304144)the Fund from Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF013)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2024-22).
文摘We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when continuous SAW or pulsed SAW were applied and obtained H_(EB).With continuous SAW,the H_(EB)decreases continuously with power.While in the case of pulsed SAW,the H_(EB)first decreases and then stabilizes.Compared to pulsed SAW,the thermal effects from the continuous SAW lead to the continuous decrease of H_(EB)at higher SAW power,which is verified by the measurement of H_(EB)at different temperatures and input currents.Furthermore,our results show that pulsed SAW can effectively avoid thermal effects.The decrease of H_(EB)at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field,which leads to a small perturbation in the magnetic moment of the FM layer.Combined with the AMR values measured at different angles during the saturation field,we believe that the SAW-induced dynamic strain field causes a 15°angle between the magnetic moment and the easy axis.Our experiments provide a different approach to manipulating H_(EB),opening up a potential avenue for future manipulation of antiferromagnetic moments.
基金supported by the National Natural Science Foundation of China(Grant No.11974044)。
文摘Topological insulators with localized edge or interface states have been extensively studied,particularly in phononic crystals and related fields;however,their application in seismic metamaterials remains largely unexplored.To address this gap,we designed a topological seismic metamaterial,where the topological interface is formed by joining the ends of two distinct one-dimensional periodic lattices.The first full-scale field experiment confirms the existence of topological interface states,which exhibit pronounced localization characteristics and induce a resonant amplification effect of 7.2 dB on the total energy of seismic surface waves.This study provides the first experimental validation for the implementation of topological principles in the design of seismic metamaterials,enabling novel approaches to high-sensitivity seismic detection and efficient energy localization for wave control.
基金supported by National Natural Science Foundation of China(Grant Nos:62122004 and 62274082)Beijing Natural Science Foundation(Grant No.Z210006)+5 种基金Hong Kong Research Grant Council(Grant Nos.27206321,17205922,17212923,C1009-22G and T45-701/22-R)Shenzhen Science and Technology Innovation Commission(SGDX20220530111405040,JCYJ20220530115411025 and JCYJ20210324120409025)Research on mechanism of source/drain ohmic contact and the related Ga N p-FET(Grant No:2023A1515030034)Research on high-reliable Ga N power device and the related industrial power system(Grant No:HZQB-KCZYZ-2021052)supported by ACCESS-AI Chip Center for Emerging Smart Systems,sponsored by Innovation and Technology Fund(ITF),Hong Kong SARthe assistance of SUSTech Core Research Facilities。
文摘Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.
基金the Natural Science Foundation(Grant No.40739908)National Basic Research Program of China(973 Program)(Grant No.2007CB209605).
文摘In this paper,we develop a new and effective multiple scale and strongly directional method for identifying and suppressing ground roll based on the second generation curvelet transform.Making the best use of the curvelet transform's strong local directional characteristics,seismic frequency bands are transformed into scale data with and without noise.Since surface waves and primary reflected waves have less overlap in the curvelet domain,we can effectively identify and separate noise.Applying this method to prestack seismic data can successfully remove surface waves and,at the same time,protect the reflected events well,particularly in the low-frequency band.This indicates that the method described in this paper is an effective and amplitude-preserving method.
基金This project was financially supported by the National Nature Science Foundation of China(Grant No.49876012,49976003)
文摘Laboratory experiments are conducted to study the probability distribution of surface elevation for wind waves and the convergence is discussed of the Gram-Charlier series in describing the surface elevation distribution. Results show that the agreement between the Gram-Charlier series and the observed distribution becomes better and better as the truncated order of the series increases in a certain range, which is contrary to the phenomenon observed by Huang and Long (1980). It is also shown that the Gram-Charlier series is sensitive to the anomalies in the data set which will make the agreement worse if they are not preprocessed appropriately. Negative values of the probability distribution expressed by the Gram-Charlier series in some ranges of surface elevations are discussed, but the absolute values of the negative values as well as the ranges of their occurrence become smaller gradually as more and mote terms are included. Therefore the negative values will have no evident effect on the form of the whole surface elevation distribution when the series is truncated at higher orders. Furthermore, a simple recurrence formula is obtained to calculate the coefficients of the Gram-Charlier series in order to extend the Gram-Charlier series to high orders conveniently.
基金supported by National Science Foundation of United States (EAR-0838188) and Department of Geology, UIUCsupported by NSF-EAR award 0944022 and a sub-award from NSF-OISE 0730154
文摘We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust.
基金supported by the National Natural Science Foundation of China (No. 51279187)the High Technology Research and Development Program of China (863 Program, No. 2010AA09Z303)+1 种基金the Fundamental Research Funds for the Central Universities (No.201262005)the Natural Science Foundation of Shandong Province (No. 2009ZRA05080)
文摘An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-13 method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.
基金supported by the National Natural Science Foundation of China (No. 41222028)the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams
文摘High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise and earthquake surface wave tomography, and great improvements in data coverage from dense portable array stations deployed in SE Tibet. In this review paper, I first give a brief overview of the tomographic methods from ambient noise and earthquake surface waves, and then summarize the major findings about the lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography as well as by other seismic and geophysical observations. These findings mainly include the 3-D distribution of mechanically weak zones in the mid-lower crust, lateral and vertical variations in radial and azimuthal anisotropy, possible interplay of some fault zones with crustal weak zones, and importance of strike-slip faulting on upper crustal deformation. These results suggest that integration of block extrusion in the more rigid upper-middle crust and channel flow in the more ductile mid-lower crust will be more compatible with the current geophysical observations. Finally I discuss some future perspective researches in SE Tibet, including array-based tomography, joint inversion using multiple seismic data, and integration of geodynamic modeling and seismic observations.
基金partly supported by the Natural Science Foundation of China(41274056)the National Science Foundation of the United States(EAR-1215824),and Department of Geology,UIUC
文摘We present a 3D model of shear velocity of crust and upper mantle in China and surrounding regions from surface wave tomography. We combine dispersion measurements from ambient noise correlation and traditional earthquake data. The stations include the China National Seismic Network, global networks, and all the available PASSCAL stations in the region over the years. The combined data sets provide excellent data coverage of the region for surface wave measurements from 8 to 120 s, which are used to invert for 3D shear wave velocity structure of the crust and upper mantle down to about 150 kin. We also derive new models of the study region for crustal thickness and averaged S velocities for upper, mid, and lower crust and the uppermost mantle. The models provide a fundamental data set for understanding continental dynamics and evolution. The tomography results reveal significant features of crust and upper mantle structure, including major basins, Moho depth variation, mantle velocity contrast between eastern and western North China Craton, widespread low-velocity zone in mid- crust in much of the Tibetan Plateau, and clear velocity contrasts of the mantle lithosphere between north and southern Tibet with significant E-W variations. The low velocity structure in the upper mantle under north and eastern TP correlates with surface geological boundaries. A patch of high velocity anomaly is found under the eastern part of the TP, which may indicate intact mantle lithosphere. Mantle lithosphere change from the western to The Tanlu Fault appears boundary. shows striking systematic eastern North China Craton. to be a major lithosphere
基金Project(2012-Z05)supported by the State Key Laboratory of Robotics,ChinaProjects(61233013,51179183)supported by the National Natural Science Foundation of China
文摘Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.
基金partially supported by the Geothermal Technologies Office of the USA Department of Energy (No. DE-EE0006760)the State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodey and Geophysics, Chinese Academy of Sciences (No. SKLGED2019-5-4-E)
文摘Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface waves.To test the feasibility of DAS in shallow structure imaging,the PoroTomo team conducted a DAS experiment with the vibroseis truck T-Rex in Brady’s Hot Springs, Nevada, USA.The Rayleigh waves excited by the vertical mode of the vibroseis truck were analyzed with the Multichannel Analysis of Surface Waves(MASW) method. Phase velocities between5 and 20 Hz were successfully extracted for one segment of cable and were employed to build a shear-wave velocity model for the top 50 meters. The dispersion curves obtained with DAS agree well with the ones extracted from co-located geophones data and from the passive source Noise Correlation Functions(NCF). Comparing to the co-located geophone array, the higher sensor density that DAS arrays provides help reducing aliasing in dispersion analysis, and separating different surface wave modes. This study demonstrates the feasibility and advantage of DAS in imaging shallow structure with surface waves.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793the Natural Science Foundation of Jiangsu Province of China under contract No.BK2012199
文摘As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.
基金The project was supported by the national Natural Science Foundation of China(Grant No.50039010)the Science and Technology Development Foundation of Shanghai Municipal Government(00XD14015)
文摘An eigen-function expansion method based on a new orthogonal inner product is proposed by Sahoo et al. (2000) for the study of the hydroelastic response of mat-type VLFS in head seas. However, their main emphasis is on the effect of edge conditions and they assume that the plate is of a semi-infinite length. In reality, the plate is of finite length. For consideration of the finite length effect, the reflection and transmission from the other end must be considered. The effect of this reflection and transmission on the hydroelastic response of VLFS is of interest for practical application. Furthermore, the physical meaning of the new inner product was not given in their paper. In this paper, it is shown that the new inner product can he derived from the governing equation and the bottom boundary conditions. Then the same eigen-function expansion method is adopted for the study of the hydroelastic response of an elastic plate of finite length in surface waves. Detailed comparisons are made between the present finite length model and the semi-infinite model and between the present model predictions and the experimental results. It is found that that the finite length effect is significant and the accuracy of present model is higher than the semi-infinite model. Furthermore, a new phenomenon, which is not mentioned in Sahoo et al. (2000), is found. Taht is, for larger L/h ratios, the reflection and transmission coefficients will oscillate with the non-dimensional parameter k(0) h. Further study is needed for full understanding of this phenomenon.
基金supported by the National Natural Science Foundation of China (Grant No. 41576013)the National Key Research and Development Program of China (Grant No. 2016YFC1401404)+1 种基金supported by the National Natural Science Foundation of China (Grant No. 41476021 and 41621064)the Indo-Pacific Ocean Environment Variation and Air–Sea Interaction project (GASI-IPOVAI-04)
文摘The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.