With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup...With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.展开更多
Complex factors including steep slopes, intense wave breaking, large bottom friction and remarkable wave setup should be considered while studying wave propagation over coral reefs, and how to simulate wave propagatio...Complex factors including steep slopes, intense wave breaking, large bottom friction and remarkable wave setup should be considered while studying wave propagation over coral reefs, and how to simulate wave propagation and setup on coral reefs efficiently has become a primary focus. Several wave models can be used on coral reefs as have been published, but further testing and comparison of the reliability and applicability of these models are needed. A comparative study of four numerical wave models (i.e., FUNWAVE-TVD, Coulwave, NHWAVE and ZZL18) is carried out in this paper. These models’ governing equations and numerical methods are compared and analyzed firstly to obtain their differences and connections;then the simulation effects of the four wave models are tested in four representative laboratory experiments. The results show that all four models can reasonably predict the spectrum transformation. Coulwave, NHWAVE and ZZL18 can predict the wave height variation more accurately;Coulwave and FUNWAVE-TVD tend to underestimate wave setup on the reef top induced by spilling breaker, while NHWAVE and ZZL18 can predict wave setup relatively accurately for all types of breakers;NHWAVE and ZZL18 can predict wave reflection by steep reef slope more accurately. This study can provide evidence for choosing suitable models for practical engineering or establishing new models.展开更多
To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave mode...To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave model. The model is based on higher-order Boussinesq equations and a higher-accuracy finite difference method. The dominant energy dissipation in the surf zone, wave breaking, and bottom friction were considered by use of the eddy viscosity concept and quadratic bottom friction law, respectively. Numerical simulation was conducted for a wide range of wave conditions and reef profiles. Good overall agreement between the computed results and the measurements shows that this model is capable of describing wave processes in the fringing reef environment. Numerical experiments were also conducted to track the source of underestimation of setup for highly nonlinear waves. Linear properties (including dispersion and shoaling) are found to contribute little to the underestimation; the low accuracy in nonlinearity and the ad hoc method for treating wave breaking may be the reason for the problem.展开更多
The wave-induced setup and circulation in a two dimensional horizontal(2DH)reef-lagoon-channel system is investigated by a non-hydrostatic model.The simulated results agree well with observations from the laboratory e...The wave-induced setup and circulation in a two dimensional horizontal(2DH)reef-lagoon-channel system is investigated by a non-hydrostatic model.The simulated results agree well with observations from the laboratory experiments,revealing that the model is valid in simulating wave transformation and currents over reefs.The effects of incident wave height,period,and reef flat water depth on the mean sea level and wave-driven currents are examined.Results show that the distributions of mean sea level and current velocities on the reef flat adjacent to the channel vary significantly from those in the area close to the side walls.From the wave averaged current field,an obvious alongshore flux flowing from the reef flat to the channel is captured.The flux from the reef flat composes the second source of the offshore rip current,while the first source is from the lagoon.A detailed momentum balance analysis shows that the alongshore current is mainly induced by the pressure gradient between the reef flat and the channel.In the lagoon,the momentum balances are between the pressure and radiation stress gradient,which drives flow towards the channel.Along the channel,the offshore current is mainly driven by the pressure gradient.展开更多
Wave-driven circulation in a reef-lagoon-channel system has significant ecological,geomorphological,and environmental implications.However,there is still research gap in fully understanding the responses of wave-drive...Wave-driven circulation in a reef-lagoon-channel system has significant ecological,geomorphological,and environmental implications.However,there is still research gap in fully understanding the responses of wave-driven circulation in the system to varying incident wave forcing and reef morphology.To better interpret the wave-current process inside an idealized reef-lagoon-channel configuration,a numerical model based on the horizontally two-dimensional(2DH)fully nonlinear Boussinesq equations is presented in this study.The adopted model is firstly validated by a published laboratory dataset for wave height,wave setup and mean current in the system.Subsequently,the impacts of wave forcing(incident wave height,incident wave period,reef-flat wave level)and reef morphological(fore-reef slope,cross-shore reef-flat width,channel width,reef roughness)factors that are not fully considered in the previous laboratory studies are reported through the numerical simulations in this study.Finally,the model is applied to analyze the wave pump efficiency parameter in the system,and an empirical equation to predict this parameter is also proposed.展开更多
基金The National Natural Science Foundation of China under contract No. 40266001
文摘With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this case study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated. Without the advection term, the setup is reduced clue to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11572130 and 41106031)
文摘Complex factors including steep slopes, intense wave breaking, large bottom friction and remarkable wave setup should be considered while studying wave propagation over coral reefs, and how to simulate wave propagation and setup on coral reefs efficiently has become a primary focus. Several wave models can be used on coral reefs as have been published, but further testing and comparison of the reliability and applicability of these models are needed. A comparative study of four numerical wave models (i.e., FUNWAVE-TVD, Coulwave, NHWAVE and ZZL18) is carried out in this paper. These models’ governing equations and numerical methods are compared and analyzed firstly to obtain their differences and connections;then the simulation effects of the four wave models are tested in four representative laboratory experiments. The results show that all four models can reasonably predict the spectrum transformation. Coulwave, NHWAVE and ZZL18 can predict the wave height variation more accurately;Coulwave and FUNWAVE-TVD tend to underestimate wave setup on the reef top induced by spilling breaker, while NHWAVE and ZZL18 can predict wave setup relatively accurately for all types of breakers;NHWAVE and ZZL18 can predict wave reflection by steep reef slope more accurately. This study can provide evidence for choosing suitable models for practical engineering or establishing new models.
基金supported by the National Natural Science Foundation of China(Grants No.51009018 and 51079024)the National Marine Environment Monitoring Center,State Oceanic Administration,P.R.China(Grant No.210206)
文摘To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave model. The model is based on higher-order Boussinesq equations and a higher-accuracy finite difference method. The dominant energy dissipation in the surf zone, wave breaking, and bottom friction were considered by use of the eddy viscosity concept and quadratic bottom friction law, respectively. Numerical simulation was conducted for a wide range of wave conditions and reef profiles. Good overall agreement between the computed results and the measurements shows that this model is capable of describing wave processes in the fringing reef environment. Numerical experiments were also conducted to track the source of underestimation of setup for highly nonlinear waves. Linear properties (including dispersion and shoaling) are found to contribute little to the underestimation; the low accuracy in nonlinearity and the ad hoc method for treating wave breaking may be the reason for the problem.
基金The Key Project of NSFC-Shangdong Joint Research Funding under contract No.U1906230the Fundamental Research Funds for the Central Universities under contract No.B200202064+1 种基金the National Natural Science Foundation of China under contract Nos 41930538 and 51879096Marine Science and Technology Innovation Project of Jiangsu Province under contract No.HY2018-15。
文摘The wave-induced setup and circulation in a two dimensional horizontal(2DH)reef-lagoon-channel system is investigated by a non-hydrostatic model.The simulated results agree well with observations from the laboratory experiments,revealing that the model is valid in simulating wave transformation and currents over reefs.The effects of incident wave height,period,and reef flat water depth on the mean sea level and wave-driven currents are examined.Results show that the distributions of mean sea level and current velocities on the reef flat adjacent to the channel vary significantly from those in the area close to the side walls.From the wave averaged current field,an obvious alongshore flux flowing from the reef flat to the channel is captured.The flux from the reef flat composes the second source of the offshore rip current,while the first source is from the lagoon.A detailed momentum balance analysis shows that the alongshore current is mainly induced by the pressure gradient between the reef flat and the channel.In the lagoon,the momentum balances are between the pressure and radiation stress gradient,which drives flow towards the channel.Along the channel,the offshore current is mainly driven by the pressure gradient.
基金supported by the National Natural Science Foundation of China(Grant Nos.51979013 and 51909013)the National Key Research and Development Program of China(Grant Nos.2021YFC3100502 and 2021YFB2601104).
文摘Wave-driven circulation in a reef-lagoon-channel system has significant ecological,geomorphological,and environmental implications.However,there is still research gap in fully understanding the responses of wave-driven circulation in the system to varying incident wave forcing and reef morphology.To better interpret the wave-current process inside an idealized reef-lagoon-channel configuration,a numerical model based on the horizontally two-dimensional(2DH)fully nonlinear Boussinesq equations is presented in this study.The adopted model is firstly validated by a published laboratory dataset for wave height,wave setup and mean current in the system.Subsequently,the impacts of wave forcing(incident wave height,incident wave period,reef-flat wave level)and reef morphological(fore-reef slope,cross-shore reef-flat width,channel width,reef roughness)factors that are not fully considered in the previous laboratory studies are reported through the numerical simulations in this study.Finally,the model is applied to analyze the wave pump efficiency parameter in the system,and an empirical equation to predict this parameter is also proposed.