Offshore floating photovoltaic systems have tremendous potential to address the energy crisis.As a novel type of float-ing photovoltaic system,membrane structures are increasingly applied due to their advantages of be...Offshore floating photovoltaic systems have tremendous potential to address the energy crisis.As a novel type of float-ing photovoltaic system,membrane structures are increasingly applied due to their advantages of being lightweight and cost-effective.A 1:40 scaled model for laboratory experiments was designed and developed,considering Ocean Sun’s membrane structure.The study aims to investigate the hydrodynamic characteristics of the membrane structure under wave loading by testing its various mo-tion responses and mooring forces at different wave heights and periods.The conclusions indicate that as the wave period decreases within the range of 1.75 to 1.25 s,the heave motion response of the structure decreases,whereas pitch,surge motion response,heave acceleration,and mooring force increase.The amplitudes of various motions and mooring forces of the structure decrease with de-creasing wave height.The hydrodynamic responses under irregular and regular waves follow similar patterns,but the responses and mooring forces induced by irregular waves are more significant.The structure should be designed based on the actual wave height.In addition,the same frequency resonance phenomenon is avoided because the movement period of each degree of freedom is close to the wave period.展开更多
For the global and structural fatigue strength analysis of a semi-submersible platform, wave loads under design conditions are calculated by use of the three-dimensional boundary element method. Methods for calculatin...For the global and structural fatigue strength analysis of a semi-submersible platform, wave loads under design conditions are calculated by use of the three-dimensional boundary element method. Methods for calculating the forward-speed free-surface Green function are discussed and a computer program with this Green function is developed. According to the special rules, the wave loads under several typical design conditions of the platform are calculated. The maximum vertical bending moment, torsion moment and horizontal split force are determined from a series of contour maps of wave loads for the wave period of 5 to 18 seconds at a certain interval and the wave phase of 0degrees to 360degrees at a certain interval. The wave height is determined by the function of wave period with a given exceedance probability. The maximum wave loads under the combination of wave parameters are used as the input of hydrodynamic pressure in the three-dimensional finite element analysis process. The transfer functions of wave loads on the platform are used for the fatigue strength analysis of the K-tubular joint and the sub-model of the structure.展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
A three-dimensional method of calculating wave loads of turret moored FPSO (Flo ating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring sys...A three-dimensional method of calculating wave loads of turret moored FPSO (Flo ating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring system are calculated according to the catenary theory, which are expressed as the function of linear stiffness coefficients and the displacements of the upper ends of mooring chains. The hydrodynamic coefficients of the ship are calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for ships with a low forward speed. The equations of ship motions are established with the effect of the restoring forces from the mooring system included as linear stiffness coefficients. The equations of motions are solved in frequency domain, and the responses of wave-induced motions and loads on the ship can be obtained. A computer pro gram based on this method has been developed,and some calculation examples are illustrated. Analysis results show that the method can give satisfying prediction of wave loads.展开更多
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ...A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.展开更多
This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the...This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the technique of frequency-focusing,and the numerical simulation of focused waves is based on the NewWave model and a Fourier time-stepping procedure.The proposed model is validated by comparison with the published laboratory data.In respect of both the wave elevations and the underlying water particle kinematics,the numerical results are in excellent agreement with the experimental data.Furthermore,the local evolution of power spectra and the transfer of energy into higher frequencies can be clearly identified.Then the generalized FNV theory and Rainey’s model are applied respectively to calculate the nonlinear wave loads on a bottom-hinged vertical cylinder in focused waves.Resonant ringing response excited by the nonlinear high-frequency wave loads is found in the numerical simulation when frequency ratios(natural frequency of the structure to peak frequency of wave spectra)are equal to 3–5.Dynamic amplification factor of ringing response is also investigated for different dynamic properties(natural frequency and damping ratio)of the structure.展开更多
In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate wid...In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.展开更多
In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave ass...In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave assumption. Then the motion of the Oscillating Water Column (OWC) inside the device and its laods on the device are calculated in time domain. Several protective techniques often applied are simulated by changing the constraint of the upper end of the chamber of the device. Numerical results are used to judge the effectiveness of these techniques. The investigation shows that damping can not effectively restrain the motion of OWC when the period of incident wave is long, which may cause dangerous loads on the structure. The shut chamber can effectively restrain the motion of OWC, but alternatively cause high pressure in the chamber. A Contracting opening with a Taper (CT) can exhaust a great amount of kinetic energy of OWC, and significantly decrease the loads. It is a promising protective technique.展开更多
Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades.It is of utmost importance to decipher the loading mechanism and enhance the resilience of c...Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades.It is of utmost importance to decipher the loading mechanism and enhance the resilience of coastal bridges during extreme wave-inducing events.Quantification of vulnerability of these structures is an essential step in designing a resilient bridge system.Recently,considerable efforts have been made to study the force applied and the response of coastal bridge systems during extreme wave loading conditions.Although remarkable progress can be found in the quantification of load and response of coastal superstructures,very few studies assessed coastal bridge resiliency against extreme wave-induced loads.This paper adopts a simplified and practical technique to analyze and assess the resilience of coastal bridges exposed to extreme waves.Component-level and system-level fragility analyses form the basis of the resiliency analysis where the recovery functions are adopted based on the damage levels.It is shown that wave period has the highest contribution to the variation of bridge resiliency.Moreover,this study presents the uncertainty quantification in resiliency variation due to changes in wave load intensity.Results show that the bridge resiliency becomes more uncertain as the intensity of wave parameters increases.Finally,possible restoration strategies based on the desired resilience level and the attitude of decision-makers are also discussed.展开更多
This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform(IFFT).Considering the substantial displacement effects that Floating Offshore...This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform(IFFT).Considering the substantial displacement effects that Floating Offshore Wind Turbine(FOWT)support structures undergo when subjected to wave loads,the time-domain wave method is more suitable,while the frequency-domain method requiring IFFT cannot be used for moving bodies.Nonetheless,the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle.Thus,the paper incorporates various numerical schemes,including parallel computing and extrapolation of wave forces during specific time steps to improve overall efficiency.Despite the effectiveness of these schemes,the computational difficulties associated with the time-domain wave method persist.This study then proposes an innovative approach utilizing different randomnumbers in distinct segments,significantly reducing the computation of second-order wave loads.This random number interpolation ensures a smooth curve transition between two segments,emphasizingminimizing errors near the end of the first segment.Numerical analyses demonstrate substantial decreases in total computer time for FOWT structural analyses while maintaining consistent steel design results.The proposed method is uncomplicated,requiring only a simple subprogram modification in a conventional wave load computer program.展开更多
We explore the incorporation of an oscillating water column(OWC)device into a monopile foundation designed for offshore wind power generation.The hydrodynamic characteristics of the structure are investigated,includin...We explore the incorporation of an oscillating water column(OWC)device into a monopile foundation designed for offshore wind power generation.The hydrodynamic characteristics of the structure are investigated,including the free water surface and air pressure response inside the OwC chamber,the wave energy capture performance,and the wave load response under various power take-off(PTO)damping and wave conditions.An orifice is employed to represent the quadratic PTO damping effect.Results indicate that increasing the PTO opening ratio increases the peak frequency of the water surface oscillation coefficient inside the OWC chamber,as well as the OWC pneumatic power.The load-reduction effect of the OWC device in the positive direction is likely related to the water surface oscillation inside the chamber and the wave energy extraction efficiency.At high wave frequencies,the water surface oscillation coefficient is relatively small,while the pneumatic power remains at a large value,and the OwC device can effectively reduce wave loads in the direction of incoming waves.The optimal opening ratio of 1.51%may balance wave energy utilization efficiency with structural protection for the device.展开更多
0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide down...0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).展开更多
In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF ...In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF surface capturing scheme.The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge.Following the validation stage,the numerical model is modified to consider the pneumatic damping effect,and an extensive campaign of numerical tests is carried out to study the wave-OWC interactions for different wave periods,wave heights and pneumatic damping factors.It is found that the horizontal wave force is usually larger than the vertical one.Also,there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency,whereas the pneumatic damping has a little effect on the horizontal force.Additionally,simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening.Furthermore,3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads,respectively.展开更多
With the large-scale density stratified tank and the numerical flume proposed,series of numerical cases in line with the experiments are carried out to investigate the interaction between the tension leg platforms(TLP...With the large-scale density stratified tank and the numerical flume proposed,series of numerical cases in line with the experiments are carried out to investigate the interaction between the tension leg platforms(TLPs)and the internal solitary waves(ISWs).The waveforms,and the loads and the torques on the TLP obtained by the experiments and the simulations agree well with each other.Experimental results show that the amplitudes of the dimensionless horizontal force and torque linearly increase with the dimensionless amplitude,while that of the vertical force increases in a parabolic curve.Besides,the numerical results indicate that the horizontal and vertical forces on the TLP due to the ISWs can be divided into three components,namely,the wave pressure-difference forces,the viscous pressure-difference forces,and the frictional force that is negligible.The wave pressure-difference forces are always the major constituents.However the viscous pressure-difference component is unimportant,it is negligible as compared with the vertical forces.展开更多
Breaking waves can have tremendous destructive impact on vertical walls, yet they are poorly understood. By using particle imaging velocimetry (PIV) technology and high-precision pressure transducers, actual breakin...Breaking waves can have tremendous destructive impact on vertical walls, yet they are poorly understood. By using particle imaging velocimetry (PIV) technology and high-precision pressure transducers, actual breaking wave loads on vertical walls were studied. By simultaneously comparing the flow field structure and wave pressure, the mechanisms of breaking wave pressure could be analyzed. The probability distribution of the peak value of the first impact of a breaking wave was investigated. The results showed that the impact pressure p is mainly distributed in the range of 0.25-2.75 pv2, with the greatest possible probability at p/pv2 = 0.75.展开更多
The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
With the development of ships towards large scale, high speed and light weight, ship hydroelastic responses and slamming strength issues are becoming increasingly important. In this paper, a time-domain nonlinear hydr...With the development of ships towards large scale, high speed and light weight, ship hydroelastic responses and slamming strength issues are becoming increasingly important. In this paper, a time-domain nonlinear hydroelasticity theory is developed to predict ship motion and load responses in harsh regular waves.Hydrostatic restoring force, wave excitation force and radiation force are calculated on the instantaneously wetted body surface to consider the nonlinear effects caused by large amplitude motions of ship in steep waves. A twodimensional(2 D) generalized Wagner model and a one-dimensional(1 D) dam-breaking model are used to estimate the impact loads caused by bow flare slamming and green water on deck, respectively;the impact loads are coupled with the hydroelastic equation in time-domain. Moreover, segmented model tests are carried out in a towing tank to investigate the wave and slamming loads acting on the hull sailing in harsh regular head waves and also validate the numerical results.展开更多
A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of ac...A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.展开更多
A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in...A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object, a transient dynamic analysis method was proposed, which was under both regular and irregular wave loads. The steps of dynamic analysis under extreme conditions were illustrated with an applied case, and the dynamic amplification factor (DAF) was calculated for each response parameter of base shear, overturning moment and hull sway. Finally, the structural response results of dynamic and static were compared and analyzed. The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current, further dynamic response analysis considering both computational efficiency and accuracy was necessary.展开更多
Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore ...Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads,in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated,then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer,while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors,respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.展开更多
基金supported by the National Natural Science Foundation of China(No.52271287).
文摘Offshore floating photovoltaic systems have tremendous potential to address the energy crisis.As a novel type of float-ing photovoltaic system,membrane structures are increasingly applied due to their advantages of being lightweight and cost-effective.A 1:40 scaled model for laboratory experiments was designed and developed,considering Ocean Sun’s membrane structure.The study aims to investigate the hydrodynamic characteristics of the membrane structure under wave loading by testing its various mo-tion responses and mooring forces at different wave heights and periods.The conclusions indicate that as the wave period decreases within the range of 1.75 to 1.25 s,the heave motion response of the structure decreases,whereas pitch,surge motion response,heave acceleration,and mooring force increase.The amplitudes of various motions and mooring forces of the structure decrease with de-creasing wave height.The hydrodynamic responses under irregular and regular waves follow similar patterns,but the responses and mooring forces induced by irregular waves are more significant.The structure should be designed based on the actual wave height.In addition,the same frequency resonance phenomenon is avoided because the movement period of each degree of freedom is close to the wave period.
文摘For the global and structural fatigue strength analysis of a semi-submersible platform, wave loads under design conditions are calculated by use of the three-dimensional boundary element method. Methods for calculating the forward-speed free-surface Green function are discussed and a computer program with this Green function is developed. According to the special rules, the wave loads under several typical design conditions of the platform are calculated. The maximum vertical bending moment, torsion moment and horizontal split force are determined from a series of contour maps of wave loads for the wave period of 5 to 18 seconds at a certain interval and the wave phase of 0degrees to 360degrees at a certain interval. The wave height is determined by the function of wave period with a given exceedance probability. The maximum wave loads under the combination of wave parameters are used as the input of hydrodynamic pressure in the three-dimensional finite element analysis process. The transfer functions of wave loads on the platform are used for the fatigue strength analysis of the K-tubular joint and the sub-model of the structure.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
文摘A three-dimensional method of calculating wave loads of turret moored FPSO (Flo ating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring system are calculated according to the catenary theory, which are expressed as the function of linear stiffness coefficients and the displacements of the upper ends of mooring chains. The hydrodynamic coefficients of the ship are calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for ships with a low forward speed. The equations of ship motions are established with the effect of the restoring forces from the mooring system included as linear stiffness coefficients. The equations of motions are solved in frequency domain, and the responses of wave-induced motions and loads on the ship can be obtained. A computer pro gram based on this method has been developed,and some calculation examples are illustrated. Analysis results show that the method can give satisfying prediction of wave loads.
基金supported by the National Natural Science Foundation of China(50879090)the Key Research Program of Hydrodynamics of China(9140A14030712JB11044)
文摘A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51879039 and 51490672)。
文摘This paper presents a numerical study on the high-frequency wave loads and ringing response of offshore wind turbine foundations exposed to moderately steep transient water waves.Input wave groups are generated by the technique of frequency-focusing,and the numerical simulation of focused waves is based on the NewWave model and a Fourier time-stepping procedure.The proposed model is validated by comparison with the published laboratory data.In respect of both the wave elevations and the underlying water particle kinematics,the numerical results are in excellent agreement with the experimental data.Furthermore,the local evolution of power spectra and the transfer of energy into higher frequencies can be clearly identified.Then the generalized FNV theory and Rainey’s model are applied respectively to calculate the nonlinear wave loads on a bottom-hinged vertical cylinder in focused waves.Resonant ringing response excited by the nonlinear high-frequency wave loads is found in the numerical simulation when frequency ratios(natural frequency of the structure to peak frequency of wave spectra)are equal to 3–5.Dynamic amplification factor of ringing response is also investigated for different dynamic properties(natural frequency and damping ratio)of the structure.
基金The National Natural Science Foundation of China under contract Nos 51079025 and 11272079the Research Funds from State Key Laboratory of Coastal and Offshore Engineering under contract No.LY1602
文摘In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.
文摘In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave assumption. Then the motion of the Oscillating Water Column (OWC) inside the device and its laods on the device are calculated in time domain. Several protective techniques often applied are simulated by changing the constraint of the upper end of the chamber of the device. Numerical results are used to judge the effectiveness of these techniques. The investigation shows that damping can not effectively restrain the motion of OWC when the period of incident wave is long, which may cause dangerous loads on the structure. The shut chamber can effectively restrain the motion of OWC, but alternatively cause high pressure in the chamber. A Contracting opening with a Taper (CT) can exhaust a great amount of kinetic energy of OWC, and significantly decrease the loads. It is a promising protective technique.
基金sponsored by the Natural Science and Engineering Research Council(NSERC)of Canada through the Discovery Grant and additional funding provided by University of Calgary through the start-up grant.
文摘Records of wave-induced damage on coastal bridges during natural hazards have been well documented over the past two decades.It is of utmost importance to decipher the loading mechanism and enhance the resilience of coastal bridges during extreme wave-inducing events.Quantification of vulnerability of these structures is an essential step in designing a resilient bridge system.Recently,considerable efforts have been made to study the force applied and the response of coastal bridge systems during extreme wave loading conditions.Although remarkable progress can be found in the quantification of load and response of coastal superstructures,very few studies assessed coastal bridge resiliency against extreme wave-induced loads.This paper adopts a simplified and practical technique to analyze and assess the resilience of coastal bridges exposed to extreme waves.Component-level and system-level fragility analyses form the basis of the resiliency analysis where the recovery functions are adopted based on the damage levels.It is shown that wave period has the highest contribution to the variation of bridge resiliency.Moreover,this study presents the uncertainty quantification in resiliency variation due to changes in wave load intensity.Results show that the bridge resiliency becomes more uncertain as the intensity of wave parameters increases.Finally,possible restoration strategies based on the desired resilience level and the attitude of decision-makers are also discussed.
基金funded by National Science and Technology Council,grant number NSTC 113-2223-E-006-014.
文摘This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform(IFFT).Considering the substantial displacement effects that Floating Offshore Wind Turbine(FOWT)support structures undergo when subjected to wave loads,the time-domain wave method is more suitable,while the frequency-domain method requiring IFFT cannot be used for moving bodies.Nonetheless,the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle.Thus,the paper incorporates various numerical schemes,including parallel computing and extrapolation of wave forces during specific time steps to improve overall efficiency.Despite the effectiveness of these schemes,the computational difficulties associated with the time-domain wave method persist.This study then proposes an innovative approach utilizing different randomnumbers in distinct segments,significantly reducing the computation of second-order wave loads.This random number interpolation ensures a smooth curve transition between two segments,emphasizingminimizing errors near the end of the first segment.Numerical analyses demonstrate substantial decreases in total computer time for FOWT structural analyses while maintaining consistent steel design results.The proposed method is uncomplicated,requiring only a simple subprogram modification in a conventional wave load computer program.
基金supported by the“Pioneer”R&D Program of Zhejiang(No.2022C03009)the National Natural Science Foundation of China(Nos.52022092,51979247,and 52211530092),the Talent Program of Zhejiang Province(No.2021R52050)the Natural Science Foundation of Zhejiang Province(No.LZ23E090001),China.
文摘We explore the incorporation of an oscillating water column(OWC)device into a monopile foundation designed for offshore wind power generation.The hydrodynamic characteristics of the structure are investigated,including the free water surface and air pressure response inside the OwC chamber,the wave energy capture performance,and the wave load response under various power take-off(PTO)damping and wave conditions.An orifice is employed to represent the quadratic PTO damping effect.Results indicate that increasing the PTO opening ratio increases the peak frequency of the water surface oscillation coefficient inside the OWC chamber,as well as the OWC pneumatic power.The load-reduction effect of the OWC device in the positive direction is likely related to the water surface oscillation inside the chamber and the wave energy extraction efficiency.At high wave frequencies,the water surface oscillation coefficient is relatively small,while the pneumatic power remains at a large value,and the OwC device can effectively reduce wave loads in the direction of incoming waves.The optimal opening ratio of 1.51%may balance wave energy utilization efficiency with structural protection for the device.
基金supported by the National Natural Science Foundation of China(Nos.42090054,42377192)the Scientific Research Project of Power China Huadong Engineering Corporation Limited(No.KY2022-KC-02-02)the Natural Science Foundation of Hubei Province,China(No.2022CFA002)。
文摘0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).
基金the author thanks the National Centre for Maritime En-gineering and Hydrodynamics,Australian Maritime College,University of Tasmania,Australia for the financial support of his PhD.
文摘In this paper,hydrodynamic wave loads on an offshore stationary-floating oscillating water column(OWC)are investigated via a 2D and 3D computational fluid dynamics(CFD)modeling based on the RANS equations and the VOF surface capturing scheme.The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge.Following the validation stage,the numerical model is modified to consider the pneumatic damping effect,and an extensive campaign of numerical tests is carried out to study the wave-OWC interactions for different wave periods,wave heights and pneumatic damping factors.It is found that the horizontal wave force is usually larger than the vertical one.Also,there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency,whereas the pneumatic damping has a little effect on the horizontal force.Additionally,simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening.Furthermore,3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads,respectively.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1404202)the National Natural Science Foundation of China(Grant Nos.11972352,11572332)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB22040203,XDA22000000).
文摘With the large-scale density stratified tank and the numerical flume proposed,series of numerical cases in line with the experiments are carried out to investigate the interaction between the tension leg platforms(TLPs)and the internal solitary waves(ISWs).The waveforms,and the loads and the torques on the TLP obtained by the experiments and the simulations agree well with each other.Experimental results show that the amplitudes of the dimensionless horizontal force and torque linearly increase with the dimensionless amplitude,while that of the vertical force increases in a parabolic curve.Besides,the numerical results indicate that the horizontal and vertical forces on the TLP due to the ISWs can be divided into three components,namely,the wave pressure-difference forces,the viscous pressure-difference forces,and the frictional force that is negligible.The wave pressure-difference forces are always the major constituents.However the viscous pressure-difference component is unimportant,it is negligible as compared with the vertical forces.
基金Supported by the National Natural Science Foundation of China under Grant No.50679008
文摘Breaking waves can have tremendous destructive impact on vertical walls, yet they are poorly understood. By using particle imaging velocimetry (PIV) technology and high-precision pressure transducers, actual breaking wave loads on vertical walls were studied. By simultaneously comparing the flow field structure and wave pressure, the mechanisms of breaking wave pressure could be analyzed. The probability distribution of the peak value of the first impact of a breaking wave was investigated. The results showed that the impact pressure p is mainly distributed in the range of 0.25-2.75 pv2, with the greatest possible probability at p/pv2 = 0.75.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
基金the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province(No.2017KQNCX004)the Natural Science Foundation of Guangdong Province(No.2018A030310378)
文摘With the development of ships towards large scale, high speed and light weight, ship hydroelastic responses and slamming strength issues are becoming increasingly important. In this paper, a time-domain nonlinear hydroelasticity theory is developed to predict ship motion and load responses in harsh regular waves.Hydrostatic restoring force, wave excitation force and radiation force are calculated on the instantaneously wetted body surface to consider the nonlinear effects caused by large amplitude motions of ship in steep waves. A twodimensional(2 D) generalized Wagner model and a one-dimensional(1 D) dam-breaking model are used to estimate the impact loads caused by bow flare slamming and green water on deck, respectively;the impact loads are coupled with the hydroelastic equation in time-domain. Moreover, segmented model tests are carried out in a towing tank to investigate the wave and slamming loads acting on the hull sailing in harsh regular head waves and also validate the numerical results.
文摘A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.
基金Supported by the National Natural Science Foundation of China (Grant No.51079034) Fundamental Research Funds for the Central Universities (Grant No. HEUCFRI003).
文摘A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object, a transient dynamic analysis method was proposed, which was under both regular and irregular wave loads. The steps of dynamic analysis under extreme conditions were illustrated with an applied case, and the dynamic amplification factor (DAF) was calculated for each response parameter of base shear, overturning moment and hull sway. Finally, the structural response results of dynamic and static were compared and analyzed. The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current, further dynamic response analysis considering both computational efficiency and accuracy was necessary.
基金Supported by the National Natural Science Foundation of China(No.41072216)the Science and Technology Development Program of Shandong Province(No.2014GGX104007)
文摘Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe(Yellow) River delta were investigated experimentally and numerically. Laboratory experiments were carried out to explore the response of a layered silty seabed with various saturation conditions under cyclic wave loads,in which the pore pressure and seepage-related phenomena were particularly monitored. Numerical models to simulate wave-induced seepage in the seabed were presented and evaluated,then applied to the Huanghe River delta. The experimental results show that the excess pore pressure decreases more rapidly at the surface layer,while the seepage-related phenomena are more pronounced when large cyclic loads are applied and the underlying layer is less saturated. The proposed numerical models were verified by comparing with the experiments. The calculated seepage depth agreed well with the depth of the pockmarks in the Huanghe River delta. The experimental and numerical results and the existing insitu investigations indicate that the wave-induced seepage may be a direct cause of the pockmarks in the Huanghe River delta. Extreme storm waves and the dual-layered structure of hard surface layer and weak underlying layer are essential external and internal factors,respectively. Wave- or current-induced scour and transport are possible contributors to the reformation of pockmarks at a later stage.