Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh f...Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh form, involves two parameters: the average wave height H— and the state parameter γ. The role of γ in the distribution of wave heights is examined. It is found that γ may be a certain measure of sea state. A least square method for determining γ from measured data is proposed. In virtue of the method, the values of γ are determined for three sea states from the data measured in the East China Sea. The present PDF is compared with the well known Rayleigh PDF of wave height and it is shown that it much better fits the data than the Rayleigh PDF. It is expected that the present PDF would fit some other wave variables, since its derivation is not restricted only to the wave height.展开更多
A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a conti...A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.展开更多
This paper reveals that the long-period statistic distribution of the characteristic heights of deep-water waves assumes the lognormal distribution. Thereafter, the largest wave-height which may occur in the service l...This paper reveals that the long-period statistic distribution of the characteristic heights of deep-water waves assumes the lognormal distribution. Thereafter, the largest wave-height which may occur in the service life of coastal structures is derived in this paper.展开更多
L-moments are defined as linear combinations of probability-weighted moments, They are, virtually unbiased for small samples, and perform well in parameter estimation, choice of the distribution type and regional anal...L-moments are defined as linear combinations of probability-weighted moments, They are, virtually unbiased for small samples, and perform well in parameter estimation, choice of the distribution type and regional analysis. The traditional methods of determining the design wave heights for planning marine structures use data only from the site of interest. Regional frequency analysis gives a new approach to estimate quantile by use of the homogeneous neighborhood informatian. A regional frequency analysis based on L-moments with a case study of the California coast is presented. The significant wave height data for the California coast is offered by NDBC. A 6-site region without 46023 is considered to be a homogeneous region, whose optimal regional distribution is Pearson Ⅲ. The test is conducted by a simulation process. The regional quantile is compared with the at-site quantile, and it is shown that efficient neighborhood information can be used via regional frequency analysis to give a reasonable estimation of the site without enough historical data.展开更多
The probability distribution of wave heights under the assumption of narrowband linear wave theory follows the Rayleigh distribution and the statistical relationships between some characteristic wave heights, derived ...The probability distribution of wave heights under the assumption of narrowband linear wave theory follows the Rayleigh distribution and the statistical relationships between some characteristic wave heights, derived from this distribution, are widely used for the treatment of realistic wind waves. However, the bandwidth of wave frequency influences the probability distribution of wave heights. In this paper, a wave-spectrum-width parameter B was introduced into the JONSWAP spectrum. This facilitated the construction of a wind-wave spectrum and the reconstruction of wind-wave time series for various growth stages, based on which the probability density distributions of the wind-wave heights were studied statistically. The distribution curves deviated slightly from the theoretical Rayleigh distribution with increasing B. The probability that a wave height exceeded a certain value was clearly smaller than the theoretical value for B≥0.3, and the difference between them increased with the threshold value. The relation between the Hs/σ ratio and B was investigated statistically, which revealed that the Hs/σ ratio deviated from 4.005 and declined with B. When B reached 0.698 1, the Hs/σ ratio was 3.825, which is about 95.5% of its original value. This indicates an overestimation in the a potential method for improving the accuracy of the Hs extremely large waves under severe sea states. prediction of Hs from Hs=4.005σ, and provides remote sensing retrieval algorithm, critical for展开更多
To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with...To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.展开更多
A method is presented to extrapolate a time series of wave data to extreme wave heights. The 15-year time series of deepwater wave data collected for 34 min every hour from 1988 to 2002 in the South Pacific Ocean, Aus...A method is presented to extrapolate a time series of wave data to extreme wave heights. The 15-year time series of deepwater wave data collected for 34 min every hour from 1988 to 2002 in the South Pacific Ocean, Australia, is analyzed to generate a set of storm peak wave heights by use of the Peaks-Over-Threshold method. The probability distribution is calculated by grouping the observod storm peak wave heights into a number of wave height classes and assigning a probability to each wave height class. The observed probability distribution is then fitted to eight different probability distribution functions and found to be fitted best by the Weibull distribution (a = 1.17), nearly best by the FT-Ⅰ, quite well by the exponential, and poorly by the lognormal function based on the criterion of the sum of squares of the errors, SSE (H). The effect of the threshold wave height on the estimated extreme wave height is also studied and is found insignificant in this study. The 95 % prediction intervals of the best-fit FT-Ⅰ , exponential and Weibull functions are also derived.展开更多
The joint distribution of wave heights and periods of individual waves is usually approximated by the joint distribution of apparent wave heights and periods. However there is difference between them. This difference ...The joint distribution of wave heights and periods of individual waves is usually approximated by the joint distribution of apparent wave heights and periods. However there is difference between them. This difference is addressed and the theoretical joint distributions of apparent wave heights and periods due to Longuet-Higgins and Sun are modified to give more reasonable representations of the joint distribution of wave heights and periods of individual waves. The modification has overcome an inherent drawback of these joint PDFs that the mean wave period is infinite. A comparison is made between the modified formulae and the field data of Goda, which shows that the new formulae consist with the measurement better than their original counterparts.展开更多
A joint probability density is derived for wavelengths and wave heights. It is asymmetric and depends only on the spectral bandwidth epsilon defined by Cartwright and Longuet-Higgins (1956). After that a theoretical p...A joint probability density is derived for wavelengths and wave heights. It is asymmetric and depends only on the spectral bandwidth epsilon defined by Cartwright and Longuet-Higgins (1956). After that a theoretical probability density for wave steepness is obtained. It tends to Rayleigh distribution as epsilon --> 0. A comparison between theoretical steepness distribution and laboratory experiment result shows good agreement.展开更多
This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculat...This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculation. In the proposed Transformed Rayleigh method, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The proposed new method has been applied for calculating the wave height exceedance probabilities of a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in this case that the proposed new method can offer better predictions than those by using the conventional Rayleigh wave height distribution model. The proposed new method has been further applied for calculating the total horizontal loads on a generic jacket, and its accuracy has once again been substantiated. The research findings gained from this study demonstrate that the proposed Transformed Rayleigh model can be utilized as a promising alternative to the well-established nonlinear wave height distribution models.展开更多
A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to tha...A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm, which is, if the average wave period is ≤7s, the root mean square of significant wave height retrieved from ERS-1/2 data is 0.51 m, or 0.72 m if it is >7s otherwise.展开更多
This paper presents a refined method for estimating the annual extreme wave heights at a coastal or offshore project site on the basis of the data acquired at some nearby routine hydrographic stations. This method is ...This paper presents a refined method for estimating the annual extreme wave heights at a coastal or offshore project site on the basis of the data acquired at some nearby routine hydrographic stations. This method is based on the orthogonality principle in linear mean square estimation of stochastic processes. The error of the method is analyzed and compared with that of the conventional method. It is found that the method is able to effectively reduce the error so long as some feasible measures are adopted. A simulated test of the method has been conducted in a large scale wind wave flume. The test results are in good agreement with those given by theoretical error analysis. A scheme to implement the method is proposed on the basis of error analysis. The scheme is so designed as to reduce the estimation error as far as possible. This method is also suitable to utilizing satellite wave data for the estimation.展开更多
The joint design criteria of significant wave heights and wind speeds are quite important for the structural reliability of fixed offshore platforms.However,the design method that regards different ocean environmental...The joint design criteria of significant wave heights and wind speeds are quite important for the structural reliability of fixed offshore platforms.However,the design method that regards different ocean environmental variables as independent is conservative.In the present study,we introduce a bivariate sample consisting of the maximum wave heights and concomitant wind speeds of the threshold by using the peak-over-threshold and declustering methods.After selecting the appropriate bivariate copulas and univariate distributions and blocking the sample into years,the bivariate compound distribution of annual extreme wave heights and concomitant wind speeds is constructed.Two joint design criteria,namely,the joint probability density method and the conditional probability method,are applied to obtain the joint return values of significant wave heights and wind speeds.Results show that(28.5±0.5)m s^(-1)is the frequently obtained wind speed based on the Atlantic dataset,and these joint design values are more appropriate than those calculated by univariate analysis in the fatigue design.展开更多
Based on historical wind fields in the Bohai Sea, a sequence of annual extremal wave heights is produced with numerical wave models for deep-water and shallow water. The design wave heights with different return perio...Based on historical wind fields in the Bohai Sea, a sequence of annual extremal wave heights is produced with numerical wave models for deep-water and shallow water. The design wave heights with different return periods for the nearest deep-water point and for the shallow water point are estimated on the basis of P-III type, Weibull distribution, and Gumbel distribution; and the corresponding values for the shallow water point are also estimated based on the HISWA model with the input of design wave heights for the nearest deep-water point. Comparisons between design wave heights for the shallow water point estimated on the basis of both distribution functions are HISWA model show that the results from different distribution functions scatter considerably, and influenced strongly by return periods; however, the results from the HISWA model are convergent, that is, the influence of the design wave heights estimated with different distribution functions for deep water is weakened, and the estimated values decrease for long return periods and increase for short return periods. Therefore, the numerical wave model gives a more stable result in shallow water design wave estimation because of the consideration of the effect of physical processes which occur in shallow water.展开更多
Significant wave height(SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications,...Significant wave height(SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications, especially for climate studies. HY-2a altimeter has been operational since April 2012 and its products are available to the scientific community. In this work, SWH data from HY-2A altimeters are calibrated against in situ buoy data from the National Data Buoy Center(NDBC), Distinguished from previous calibration studies which generally regarded buoy data as "truth", the work of calibration for HY-2A altimeter wave data against in situ buoys was applied a more sophisticated statistical technique-the total least squares(TLS) method which can take into account errors in both variables. We present calibration results for HY-2A radar altimeter measurement of wave height against NDBC buoys. In addition, cross-calibration for HY-2A and Jason-2 wave data are talked over and the result is given.展开更多
The modified versions of the linear theoretical model of Longuet-Higgins (1983) are derived in this work and also compared with the laboratory experiments carried out in MAR1NTEK. The main feature of modifications i...The modified versions of the linear theoretical model of Longuet-Higgins (1983) are derived in this work and also compared with the laboratory experiments carried out in MAR1NTEK. The main feature of modifications is to replace the mean frequency in the formulation with the peak frequency of the wave spectrum. These two alternative forms of joint distributions are checked in three typical random sea states characterized by the initial wave steepness. In order to further explore the properties &these models, the associated marginal distributions of wave heights and wave periods are also researched with the observed statistics and some encouraging results are obtained.展开更多
When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of su...When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.展开更多
Distribution of wave heights and surface elevations of wind-driven waves are studied. Records of surface elevations obtained from both field observations and laboratory measurements are analyzed. Wave heights can be a...Distribution of wave heights and surface elevations of wind-driven waves are studied. Records of surface elevations obtained from both field observations and laboratory measurements are analyzed. Wave heights can be approximated by normal, two-parameter Weibull, and/or Rayleigh distribution. However, while the first two models may have almost equal probabilities to fit measured data quite satisfactorily, the Rayleigh distribution does not appear to be a good model for the majority of the cases studied. Surface elevations from field data are well described by the Gaussian model, but as with increasing wind speeds, water surface in a wind-wave flume deviates from normality, and the Edgeworth/s form of the type A Gram-Charlier series is then applied.展开更多
Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function wa...Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function was obtained by calibration of the magnitudes of the gray values of the images against the results of wave gauge measurements for directional waves. With this transfer function, wave heights for regular waves were deduced. It is shown that the average relative errors are smaller than 16% for both unidirectional and directional waves.展开更多
Extreme waves may considerably impact crucial coastal and marine engineering structures. The First Scientific Assessment Report on Ocean and Climate Change of China and The Fourth Assessment Report on Climate Change o...Extreme waves may considerably impact crucial coastal and marine engineering structures. The First Scientific Assessment Report on Ocean and Climate Change of China and The Fourth Assessment Report on Climate Change of China were published in 2020 and 2022, respectively.However, no concrete results on the long-term trends in wave changes in China have been obtained. In this study, long-term trends in extreme wave elements over the past 55 years were investigated using wave data from five in situ observation sites(i.e., Lao Hu Tan, Cheng Shan Tou,Ri Zhao, Nan Ji, Wei Zhou) along the coast of China. The five stations showed different trends in wave height. Results show a general downward trend in wave heights at the LHT and CST stations, reaching-0.78 and-1.44 cm/a, respectively, in summer at middle and high latitudes. NJI stations at middle-to-low latitudes are influenced by the winter monsoon and summer tropical cyclones, showing a substantial increase in extreme wave heights(0.7 cm/a in winter and 2.68 cm/a in summer). The cumulative duration of H_(1/10) ≥ 3 m at NJI and RZH has grown since 1990.展开更多
文摘Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh form, involves two parameters: the average wave height H— and the state parameter γ. The role of γ in the distribution of wave heights is examined. It is found that γ may be a certain measure of sea state. A least square method for determining γ from measured data is proposed. In virtue of the method, the values of γ are determined for three sea states from the data measured in the East China Sea. The present PDF is compared with the well known Rayleigh PDF of wave height and it is shown that it much better fits the data than the Rayleigh PDF. It is expected that the present PDF would fit some other wave variables, since its derivation is not restricted only to the wave height.
基金supported by the Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting (Grant No.LOMF1101)the Shanghai Typhoon Research Fund (Grant No. 2009ST05)the National Natural Science Foundation of China(Grant No. 40776006)
文摘A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.
文摘This paper reveals that the long-period statistic distribution of the characteristic heights of deep-water waves assumes the lognormal distribution. Thereafter, the largest wave-height which may occur in the service life of coastal structures is derived in this paper.
基金This research was financially supported bythe National Natural Science Foundation of China (Grant No.50279028)
文摘L-moments are defined as linear combinations of probability-weighted moments, They are, virtually unbiased for small samples, and perform well in parameter estimation, choice of the distribution type and regional analysis. The traditional methods of determining the design wave heights for planning marine structures use data only from the site of interest. Regional frequency analysis gives a new approach to estimate quantile by use of the homogeneous neighborhood informatian. A regional frequency analysis based on L-moments with a case study of the California coast is presented. The significant wave height data for the California coast is offered by NDBC. A 6-site region without 46023 is considered to be a homogeneous region, whose optimal regional distribution is Pearson Ⅲ. The test is conducted by a simulation process. The regional quantile is compared with the at-site quantile, and it is shown that efficient neighborhood information can be used via regional frequency analysis to give a reasonable estimation of the site without enough historical data.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.U1133001,41376027,41406017)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘The probability distribution of wave heights under the assumption of narrowband linear wave theory follows the Rayleigh distribution and the statistical relationships between some characteristic wave heights, derived from this distribution, are widely used for the treatment of realistic wind waves. However, the bandwidth of wave frequency influences the probability distribution of wave heights. In this paper, a wave-spectrum-width parameter B was introduced into the JONSWAP spectrum. This facilitated the construction of a wind-wave spectrum and the reconstruction of wind-wave time series for various growth stages, based on which the probability density distributions of the wind-wave heights were studied statistically. The distribution curves deviated slightly from the theoretical Rayleigh distribution with increasing B. The probability that a wave height exceeded a certain value was clearly smaller than the theoretical value for B≥0.3, and the difference between them increased with the threshold value. The relation between the Hs/σ ratio and B was investigated statistically, which revealed that the Hs/σ ratio deviated from 4.005 and declined with B. When B reached 0.698 1, the Hs/σ ratio was 3.825, which is about 95.5% of its original value. This indicates an overestimation in the a potential method for improving the accuracy of the Hs extremely large waves under severe sea states. prediction of Hs from Hs=4.005σ, and provides remote sensing retrieval algorithm, critical for
基金The National Key R&D Program of China under contract No.2016YFC1402103
文摘To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.
文摘A method is presented to extrapolate a time series of wave data to extreme wave heights. The 15-year time series of deepwater wave data collected for 34 min every hour from 1988 to 2002 in the South Pacific Ocean, Australia, is analyzed to generate a set of storm peak wave heights by use of the Peaks-Over-Threshold method. The probability distribution is calculated by grouping the observod storm peak wave heights into a number of wave height classes and assigning a probability to each wave height class. The observed probability distribution is then fitted to eight different probability distribution functions and found to be fitted best by the Weibull distribution (a = 1.17), nearly best by the FT-Ⅰ, quite well by the exponential, and poorly by the lognormal function based on the criterion of the sum of squares of the errors, SSE (H). The effect of the threshold wave height on the estimated extreme wave height is also studied and is found insignificant in this study. The 95 % prediction intervals of the best-fit FT-Ⅰ , exponential and Weibull functions are also derived.
文摘The joint distribution of wave heights and periods of individual waves is usually approximated by the joint distribution of apparent wave heights and periods. However there is difference between them. This difference is addressed and the theoretical joint distributions of apparent wave heights and periods due to Longuet-Higgins and Sun are modified to give more reasonable representations of the joint distribution of wave heights and periods of individual waves. The modification has overcome an inherent drawback of these joint PDFs that the mean wave period is infinite. A comparison is made between the modified formulae and the field data of Goda, which shows that the new formulae consist with the measurement better than their original counterparts.
基金National Natural Foundation of China.(No.49676277)
文摘A joint probability density is derived for wavelengths and wave heights. It is asymmetric and depends only on the spectral bandwidth epsilon defined by Cartwright and Longuet-Higgins (1956). After that a theoretical probability density for wave steepness is obtained. It tends to Rayleigh distribution as epsilon --> 0. A comparison between theoretical steepness distribution and laboratory experiment result shows good agreement.
基金financially supported by the Chinese State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(Grant No.GKZD010038)
文摘This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculation. In the proposed Transformed Rayleigh method, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The proposed new method has been applied for calculating the wave height exceedance probabilities of a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in this case that the proposed new method can offer better predictions than those by using the conventional Rayleigh wave height distribution model. The proposed new method has been further applied for calculating the total horizontal loads on a generic jacket, and its accuracy has once again been substantiated. The research findings gained from this study demonstrate that the proposed Transformed Rayleigh model can be utilized as a promising alternative to the well-established nonlinear wave height distribution models.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No.2008AA09Z102)the Canadian Space Agency (CSA) GRIP Program.
文摘A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm, which is, if the average wave period is ≤7s, the root mean square of significant wave height retrieved from ERS-1/2 data is 0.51 m, or 0.72 m if it is >7s otherwise.
文摘This paper presents a refined method for estimating the annual extreme wave heights at a coastal or offshore project site on the basis of the data acquired at some nearby routine hydrographic stations. This method is based on the orthogonality principle in linear mean square estimation of stochastic processes. The error of the method is analyzed and compared with that of the conventional method. It is found that the method is able to effectively reduce the error so long as some feasible measures are adopted. A simulated test of the method has been conducted in a large scale wind wave flume. The test results are in good agreement with those given by theoretical error analysis. A scheme to implement the method is proposed on the basis of error analysis. The scheme is so designed as to reduce the estimation error as far as possible. This method is also suitable to utilizing satellite wave data for the estimation.
基金the National Natural Science Foundation of China(No.52171284)。
文摘The joint design criteria of significant wave heights and wind speeds are quite important for the structural reliability of fixed offshore platforms.However,the design method that regards different ocean environmental variables as independent is conservative.In the present study,we introduce a bivariate sample consisting of the maximum wave heights and concomitant wind speeds of the threshold by using the peak-over-threshold and declustering methods.After selecting the appropriate bivariate copulas and univariate distributions and blocking the sample into years,the bivariate compound distribution of annual extreme wave heights and concomitant wind speeds is constructed.Two joint design criteria,namely,the joint probability density method and the conditional probability method,are applied to obtain the joint return values of significant wave heights and wind speeds.Results show that(28.5±0.5)m s^(-1)is the frequently obtained wind speed based on the Atlantic dataset,and these joint design values are more appropriate than those calculated by univariate analysis in the fatigue design.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.49776282)
文摘Based on historical wind fields in the Bohai Sea, a sequence of annual extremal wave heights is produced with numerical wave models for deep-water and shallow water. The design wave heights with different return periods for the nearest deep-water point and for the shallow water point are estimated on the basis of P-III type, Weibull distribution, and Gumbel distribution; and the corresponding values for the shallow water point are also estimated based on the HISWA model with the input of design wave heights for the nearest deep-water point. Comparisons between design wave heights for the shallow water point estimated on the basis of both distribution functions are HISWA model show that the results from different distribution functions scatter considerably, and influenced strongly by return periods; however, the results from the HISWA model are convergent, that is, the influence of the design wave heights estimated with different distribution functions for deep water is weakened, and the estimated values decrease for long return periods and increase for short return periods. Therefore, the numerical wave model gives a more stable result in shallow water design wave estimation because of the consideration of the effect of physical processes which occur in shallow water.
基金The Marine Public Welfare Project of China under contract No.201305032
文摘Significant wave height(SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications, especially for climate studies. HY-2a altimeter has been operational since April 2012 and its products are available to the scientific community. In this work, SWH data from HY-2A altimeters are calibrated against in situ buoy data from the National Data Buoy Center(NDBC), Distinguished from previous calibration studies which generally regarded buoy data as "truth", the work of calibration for HY-2A altimeter wave data against in situ buoys was applied a more sophisticated statistical technique-the total least squares(TLS) method which can take into account errors in both variables. We present calibration results for HY-2A radar altimeter measurement of wave height against NDBC buoys. In addition, cross-calibration for HY-2A and Jason-2 wave data are talked over and the result is given.
基金financially supported by the European Union(Grant No.234175)the Portuguese Foundation for Science and Technology(Grant No.SFRH/BD/98983/2013)
文摘The modified versions of the linear theoretical model of Longuet-Higgins (1983) are derived in this work and also compared with the laboratory experiments carried out in MAR1NTEK. The main feature of modifications is to replace the mean frequency in the formulation with the peak frequency of the wave spectrum. These two alternative forms of joint distributions are checked in three typical random sea states characterized by the initial wave steepness. In order to further explore the properties &these models, the associated marginal distributions of wave heights and wave periods are also researched with the observed statistics and some encouraging results are obtained.
基金The National Natural Science Foundation of China under contract Nos 41076048 and 40906044
文摘When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.
文摘Distribution of wave heights and surface elevations of wind-driven waves are studied. Records of surface elevations obtained from both field observations and laboratory measurements are analyzed. Wave heights can be approximated by normal, two-parameter Weibull, and/or Rayleigh distribution. However, while the first two models may have almost equal probabilities to fit measured data quite satisfactorily, the Rayleigh distribution does not appear to be a good model for the majority of the cases studied. Surface elevations from field data are well described by the Gaussian model, but as with increasing wind speeds, water surface in a wind-wave flume deviates from normality, and the Edgeworth/s form of the type A Gram-Charlier series is then applied.
基金This work was financially supported by the Science Council, Taiwan (Project No. NSC 91 2611 E 019 007)
文摘Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function was obtained by calibration of the magnitudes of the gray values of the images against the results of wave gauge measurements for directional waves. With this transfer function, wave heights for regular waves were deduced. It is shown that the average relative errors are smaller than 16% for both unidirectional and directional waves.
基金Supported by the National Natural Science Foundation of China (No. 52271271)National Key Research and Development Program of China (No. 2022YFE0104500)Major Science and Technology Projects of the Ministry of Water Resources (No. SKS-2022025)。
文摘Extreme waves may considerably impact crucial coastal and marine engineering structures. The First Scientific Assessment Report on Ocean and Climate Change of China and The Fourth Assessment Report on Climate Change of China were published in 2020 and 2022, respectively.However, no concrete results on the long-term trends in wave changes in China have been obtained. In this study, long-term trends in extreme wave elements over the past 55 years were investigated using wave data from five in situ observation sites(i.e., Lao Hu Tan, Cheng Shan Tou,Ri Zhao, Nan Ji, Wei Zhou) along the coast of China. The five stations showed different trends in wave height. Results show a general downward trend in wave heights at the LHT and CST stations, reaching-0.78 and-1.44 cm/a, respectively, in summer at middle and high latitudes. NJI stations at middle-to-low latitudes are influenced by the winter monsoon and summer tropical cyclones, showing a substantial increase in extreme wave heights(0.7 cm/a in winter and 2.68 cm/a in summer). The cumulative duration of H_(1/10) ≥ 3 m at NJI and RZH has grown since 1990.