期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
A hybrid model for numerical wave forecasting and its implementation-Ⅰ.The wind wave model 被引量:14
1
作者 Wen Shengchang (S.C. Wen)1, Zhang Dacuo, Chen Bohai and Guo Peifang Institute of Physical Oceanography, Ocean University of Qingdao (Formerly, Shandong College of Oceanography), Qingdao, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1989年第1期1-14,共14页
The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This p... The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper. 展开更多
关键词 wave A hybrid model for numerical wave forecasting and its implementation The wind wave model
在线阅读 下载PDF
A hybrid model for numerical wave forecasting and its implementation-Ⅱ .The discrete part and implementation of the model 被引量:3
2
作者 Zhang Dacuo, Wu Zengmao, Jiang Decai, Wang Wei, Chen Bohai, Tai Weitao, Wen Shengchang,Xu Qichun and Guo Peifang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第2期157-178,共22页
In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The win... In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The wind-wave part of the proposed model has also been given. Now we proceed to discuss the swell part,the implementation of the model as a prediction method,mumerical experiments done with ideal wind fields and hindcasts made in the Bohai Sea,in the neighboring seas adjacent to China and in the Northwest Pacific. 展开更多
关键词 wave The discrete part and implementation of the model A hybrid model for numerical wave forecasting and its implementation
在线阅读 下载PDF
AI-based Correction of Wave Forecasts Using the Transformer-enhanced UNet Model
3
作者 Yanzhao CAO Shouwen ZHANG +2 位作者 Guannan LV Mengchao YU Bo AI 《Advances in Atmospheric Sciences》 2025年第1期221-231,共11页
Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.T... Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.The traditional method that relies on forecasters'subjective correction of station observation data for forecasting has been unable to meet the practical needs of refined forecasting.To address this problem,this paper proposes a Transformer-enhanced UNet(TransUNet)model for wave forecast AI correction,which fuses wind and wave information.The Transformer structure is integrated into the encoder of the UNet model,and instead of using the traditional upsampling method,the dual-sampling module is employed in the decoder to enhance the feature extraction capability.This paper compares the TransUNet model with the traditional UNet model using wind speed forecast data,wave height forecast data,and significant wave height reanalysis data provided by ECMWF.The experimental results indicate that the TransUNet model yields smaller root-meansquare errors,mean errors,and standard deviations of the corrected results for the next 24-h forecasts than does the UNet model.Specifically,the root-mean-square error decreased by more than 21.55%compared to its precorrection value.According to the statistical analysis,87.81%of the corrected wave height errors for the next 24-h forecast were within±0.2m,with only 4.56%falling beyond±0.3 m.This model effectively limits the error range and enhances the ability to forecast wave heights. 展开更多
关键词 TransUNet TRANSFORMER wave forecasting bias correction
在线阅读 下载PDF
CNN-BiLSTM-Attention Model in Forecasting Wave Height over South-East China Seas 被引量:6
4
作者 Lina Wang Xilin Deng +4 位作者 Peng Ge Changming Dong Brandon J.Bethel Leqing Yang Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2022年第10期2151-2168,共18页
Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)sign... Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)significant wave height(SWH)prediction model is established for the South and East China Seas.The proposed model is trained by Wave Watch III(WW3)reanalysis data based on a convolutional neural network,the bidirectional long short-term memory and the attention mechanism(CNNBiLSTM-Attention).It adopts the convolutional neural network to extract spatial features of original wave height to reduce the redundant information input into the BiLSTM network.Meanwhile,the BiLSTM model is applied to fully extract the features of the associated information of time series data.Besides,the attention mechanism is used to assign probability weight to the output information of the BiLSTM layer units,and finally,a training model is constructed.Up to 24-h prediction experiments are conducted under normal and extreme conditions,respectively.Under the normal wave condition,for 3-,6-,12-and 24-h forecasting,the mean values of the correlation coefficients on the test set are 0.996,0.991,0.980,and 0.945,respectively.The corresponding mean values of the root mean square errors are measured at 0.063 m,0.105 m,0.172 m,and 0.281 m,respectively.Under the typhoon-forced extreme condition,the model based on CNN-BiLSTM-Attention is trained by typhooninduced SWH extracted from the WW3 reanalysis data.For 3-,6-,12-and 24-h forecasting,the mean values of correlation coefficients on the test set are respectively 0.993,0.983,0.958,and 0.921,and the averaged root mean square errors are 0.159 m,0.257 m,0.437 m,and 0.555 m,respectively.The model performs better than that trained by all the WW3 reanalysis data.The result suggests that the proposed algorithm can be applied to the 2D wave forecast with higher accuracy and efficiency. 展开更多
关键词 Conv2D CNN-BiLSTM-Attention wave forecasting significant wave height TYPHOON
在线阅读 下载PDF
Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas 被引量:5
5
作者 WANG Guansuo ZHAO Chang +2 位作者 XU Jiangling QIAO Fangli XIA Changshui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第2期19-28,共10页
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin... An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean. 展开更多
关键词 operational forecast sea surface temperature mixed layer depth lead time subsurface temperature ocean circulation-surface wave coupled forecast system China's seas
在线阅读 下载PDF
CHGS method for numerical forecasting of typhoon waves-Ⅰ. Spectrum of waves in growing phase
6
作者 Sui Shifeng South China Sea Institute of Oceanology, Academia Sinica, Guangzhou, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1990年第3期343-352,共10页
Owing to the fact that the wind speed and direction of typhoon vary rapidly with time and space in typhoon fetch; the nearer to the typhoon eye the greater the wind velocity, and the shorter the wind fetch the smaller... Owing to the fact that the wind speed and direction of typhoon vary rapidly with time and space in typhoon fetch; the nearer to the typhoon eye the greater the wind velocity, and the shorter the wind fetch the smaller the wind time,as a result,the more difficult for the wind wave to fully grow. Hence.in typhoon wave numerical calculation it is impossible to use the model for a fully grown wave spectrum. Lately, the author et at. presented a CHGS method for numerical forecasting of typhoon waves, where a model for the growing wave spectrum was set up (see Eq. (2) in the text). The model involves a parameter indicating the growing degree of wind wave, i. e. ,the mean wave age β. When βvalue is small, the wave energy is chiefly concentrated near the peak frequency, so that the spectral peak gets high and steep; with the increase of β the spectral shape gradually gets lower and gentler; when β=Ⅰ, the wave fully grows, the growing spectrum becomes a fully grown P-M spectrum. The model also shows a spectral “overshooting” phenomenon within the “balance zone”. 展开更多
关键词 Spectrum of waves in growing phase CHGS method for numerical forecasting of typhoon waves
在线阅读 下载PDF
A significant wave height prediction method with ocean characteristics fusion and spatiotemporal dynamic graph modeling
7
作者 Xiao Yin Taoxing Wu +2 位作者 Jie Yu Xiaoyu He Lingyu Xu 《Acta Oceanologica Sinica》 CSCD 2024年第12期13-33,共21页
Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave energy.Deep learning methods such as recurrent and convolutional neural networks have achieved good results in S... Accurate significant wave height(SWH)prediction is essential for the development and utilization of wave energy.Deep learning methods such as recurrent and convolutional neural networks have achieved good results in SWH forecasting.However,these methods do not adapt well to dynamic seasonal variations in wave data.In this study,we propose a novel method—the spatiotemporal dynamic graph(STDG)neural network.This method predicts the SWH of multiple nodes based on dynamic graph modeling and multi-characteristic fusion.First,considering the dynamic seasonal variations in the wave direction over time,the network models wave dynamic spatial dependencies from long-and short-term pattern perspectives.Second,to correlate multiple characteristics with SWH,the network introduces a cross-characteristic transformer to effectively fuse multiple characteristics.Finally,we conducted experiments on two datasets from the South China Sea and East China Sea to validate the proposed method and compared it with five prediction methods in the three categories.The experimental results show that the proposed method achieves the best performance at all predictive scales and has greater advantages for extreme value prediction.Furthermore,an analysis of the dynamic graph shows that the proposed method captures the seasonal variation mechanism of the waves. 展开更多
关键词 significant wave height forecasting dynamic seasonal variation dynamic graph neural networks
在线阅读 下载PDF
Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model 被引量:1
8
作者 Lina Wang Yu Cao +2 位作者 Xilin Deng Huitao Liu Changming Dong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期54-66,共13页
As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.Howev... As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions. 展开更多
关键词 significant wave height wave forecasting ensemble empirical mode decomposition(EEMD) Seq-to-Seq long short-term memory
在线阅读 下载PDF
A Spatiotemporal Interactive Processing Bias Correction Method for Operational Ocean Wave Forecasts
9
作者 AI Bo YU Mengchao +5 位作者 GUO Jingtian ZHANG Wei JIANG Tao LIU Aichao WEN Lianjie LI Wenbo 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第2期277-290,共14页
Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictio... Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictions of numerical models and the actual sea state has been observed,predictions can only be released after correction by forecasters.This paper proposes a spati-otemporal interactive processing bias correction method to correct numerical prediction fields applied to the production and release of operational ocean wave forecasting products.The proposed method combines the advantages of numerical models and Forecast Discussion;specifically,it integrates subjective and objective information to achieve interactive spatiotemporal correc-tions for numerical prediction.The method corrects the single-time numerical prediction field in space by spatial interpolation and sub-zone numerical analyses using numerical model grid data in combination with real-time observations and the artificial judg-ment of forecasters to achieve numerical prediction accuracy.The difference between the original numerical prediction field and the spatial correction field is interpolated to an adjacent time series by successive correction analysis,thereby achieving highly efficient correction for multi-time forecasting fields.In this paper,the significant wave height forecasts from the European Centre for Medium-Range Weather Forecasts are used as background field for forecasting correction and analysis.Results indicate that the proposed method has good application potential for the bias correction of numerical predictions under different sea states.The method takes into account spatial correlations for the numerical prediction field and the time series development of the numerical model to correct numerical predictions efficiently. 展开更多
关键词 numerical models ocean wave forecasts spatial interpolation time series interpolation successive correction
在线阅读 下载PDF
Case study of high waves in the South Pacific generated by Tropical Cyclone Harold in 2020
10
作者 Amit Singh Nadao Kohno Hironori Fudeyasu 《Tropical Cyclone Research and Review》 2024年第3期147-160,共14页
This study highlighted a high wave case by severe tropical cyclone Harold and conducted a simulation with a newly developed wave forecasting system for the South Pacific based on the Japan Meteorological Agency third ... This study highlighted a high wave case by severe tropical cyclone Harold and conducted a simulation with a newly developed wave forecasting system for the South Pacific based on the Japan Meteorological Agency third generation wave model(JMA MRI-III)using the National Center for Environment Prediction Global Forecast System(GFS)winds.Harold was a very intense tropical cyclone(TC)and very high waves up to 10 m affected parts of Vanuatu and Fiji.The model results were reasonable and verified against observations of orbital satellites and a wave buoy at Komave in Fiji.The statistical verifications were carefully analysed.The Root Mean Squared Error(RSME),Scatter Index(SI),Bias and R2 are all showing very impressive results.The new wave forecasting system is the first high resolution operational model at Fiji Meteorological Service(FMS),which covers the whole Fiji area.The system will provide guidance to FMS in preparing marine alerts and warning better and more confidence in providing the marine forecast accurately. 展开更多
关键词 A wave forecasting system The South pacific Tropical cyclone harold
原文传递
Improving global weather and ocean wave forecast with large artificial intelligence models
11
作者 Fenghua LING Lin OUYANG +4 位作者 Boufeniza Redouane LARBI Jing-Jia LUO Tao HAN Xiaohui ZHONG Lei BAI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第12期3641-3654,共14页
The rapid advancement of artificial intelligence technologies,particularly in recent years,has led to the emergence of several large parameter artificial intelligence weather forecast models.These models represent a s... The rapid advancement of artificial intelligence technologies,particularly in recent years,has led to the emergence of several large parameter artificial intelligence weather forecast models.These models represent a significant breakthrough,overcoming the limitations of traditional numerical weather prediction models and indicating the emergence of profound potential tools for atmosphere-ocean forecasts.This study explores the evolution of these advanced artificial intelligence forecast models,and based on the identified commonalities,proposes the“Three Large Rules”for large weather forecast models:a large number of parameters,a large number of predictands,and large potential applications.We discuss the capacity of artificial intelligence to revolutionize numerical weather prediction,briefly outlining the underlying reasons for the significant improvement in weather forecasting.While acknowledging the high accuracy,computational efficiency,and ease of deployment of large artificial intelligence forecast models,we also emphasize the irreplaceable values of traditional numerical forecasts and explore the challenges in the future development of large-scale artificial intelligence atmosphere-ocean forecast models.We believe that the optimal future of atmosphere-ocean weather forecast lies in achieving a seamless integration of artificial intelligence and traditional numerical models.Such a synthesis is anticipated to offer a more advanced and reliable approach for improved atmosphere-ocean forecasts.Finally,we illustrate how forecasters can leverage the large weather forecast models through an example by building an artificial intelligence model for global ocean wave forecast. 展开更多
关键词 Numerical weather prediction Deep learning Large AI weather forecast models Global ocean wave forecast
原文传递
Wave height forecast method with uncertainty quantification based on Gaussian process regression
12
作者 Zi-lu Ouyang Chao-fan Li +3 位作者 Ke Zhan Chuan-qing Li Ren-chuan zhu Zao-jian Zou 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第5期817-827,共11页
Wave height forecast(WHF)is of great significance to exploit the marine renewables and improve the safety of ship navigation at sea.With the development of machine learning technology,WHF can be realized in an easy-to... Wave height forecast(WHF)is of great significance to exploit the marine renewables and improve the safety of ship navigation at sea.With the development of machine learning technology,WHF can be realized in an easy-to-operate and reliable way,which improves its engineering practicability.This paper utilizes a data-driven method,Gaussian process regression(GPR),to model and predict the wave height on the basis of the input and output data.With the help of Bayes inference,the prediction results contain the uncertainty quantification naturally.The comparative studies are carried out to evaluate the performance of GPR based on the simulation data generated by high-order spectral method and the experimental data collected in the deep-water towing tank at the Shanghai Ship and Shipping Research Institute.The results demonstrate that GPR is able to model and predict the wave height with acceptable accuracy,making it a potential choice for engineering application. 展开更多
关键词 wave height forecast data-driven modeling Gaussian process regression(GPR) bayes inference covariance function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部