Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.T...Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.The traditional method that relies on forecasters'subjective correction of station observation data for forecasting has been unable to meet the practical needs of refined forecasting.To address this problem,this paper proposes a Transformer-enhanced UNet(TransUNet)model for wave forecast AI correction,which fuses wind and wave information.The Transformer structure is integrated into the encoder of the UNet model,and instead of using the traditional upsampling method,the dual-sampling module is employed in the decoder to enhance the feature extraction capability.This paper compares the TransUNet model with the traditional UNet model using wind speed forecast data,wave height forecast data,and significant wave height reanalysis data provided by ECMWF.The experimental results indicate that the TransUNet model yields smaller root-meansquare errors,mean errors,and standard deviations of the corrected results for the next 24-h forecasts than does the UNet model.Specifically,the root-mean-square error decreased by more than 21.55%compared to its precorrection value.According to the statistical analysis,87.81%of the corrected wave height errors for the next 24-h forecast were within±0.2m,with only 4.56%falling beyond±0.3 m.This model effectively limits the error range and enhances the ability to forecast wave heights.展开更多
The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This p...The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper.展开更多
In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The win...In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The wind-wave part of the proposed model has also been given. Now we proceed to discuss the swell part,the implementation of the model as a prediction method,mumerical experiments done with ideal wind fields and hindcasts made in the Bohai Sea,in the neighboring seas adjacent to China and in the Northwest Pacific.展开更多
Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictio...Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictions of numerical models and the actual sea state has been observed,predictions can only be released after correction by forecasters.This paper proposes a spati-otemporal interactive processing bias correction method to correct numerical prediction fields applied to the production and release of operational ocean wave forecasting products.The proposed method combines the advantages of numerical models and Forecast Discussion;specifically,it integrates subjective and objective information to achieve interactive spatiotemporal correc-tions for numerical prediction.The method corrects the single-time numerical prediction field in space by spatial interpolation and sub-zone numerical analyses using numerical model grid data in combination with real-time observations and the artificial judg-ment of forecasters to achieve numerical prediction accuracy.The difference between the original numerical prediction field and the spatial correction field is interpolated to an adjacent time series by successive correction analysis,thereby achieving highly efficient correction for multi-time forecasting fields.In this paper,the significant wave height forecasts from the European Centre for Medium-Range Weather Forecasts are used as background field for forecasting correction and analysis.Results indicate that the proposed method has good application potential for the bias correction of numerical predictions under different sea states.The method takes into account spatial correlations for the numerical prediction field and the time series development of the numerical model to correct numerical predictions efficiently.展开更多
Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)sign...Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)significant wave height(SWH)prediction model is established for the South and East China Seas.The proposed model is trained by Wave Watch III(WW3)reanalysis data based on a convolutional neural network,the bidirectional long short-term memory and the attention mechanism(CNNBiLSTM-Attention).It adopts the convolutional neural network to extract spatial features of original wave height to reduce the redundant information input into the BiLSTM network.Meanwhile,the BiLSTM model is applied to fully extract the features of the associated information of time series data.Besides,the attention mechanism is used to assign probability weight to the output information of the BiLSTM layer units,and finally,a training model is constructed.Up to 24-h prediction experiments are conducted under normal and extreme conditions,respectively.Under the normal wave condition,for 3-,6-,12-and 24-h forecasting,the mean values of the correlation coefficients on the test set are 0.996,0.991,0.980,and 0.945,respectively.The corresponding mean values of the root mean square errors are measured at 0.063 m,0.105 m,0.172 m,and 0.281 m,respectively.Under the typhoon-forced extreme condition,the model based on CNN-BiLSTM-Attention is trained by typhooninduced SWH extracted from the WW3 reanalysis data.For 3-,6-,12-and 24-h forecasting,the mean values of correlation coefficients on the test set are respectively 0.993,0.983,0.958,and 0.921,and the averaged root mean square errors are 0.159 m,0.257 m,0.437 m,and 0.555 m,respectively.The model performs better than that trained by all the WW3 reanalysis data.The result suggests that the proposed algorithm can be applied to the 2D wave forecast with higher accuracy and efficiency.展开更多
As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.Howev...As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions.展开更多
The rapid advancement of artificial intelligence technologies,particularly in recent years,has led to the emergence of several large parameter artificial intelligence weather forecast models.These models represent a s...The rapid advancement of artificial intelligence technologies,particularly in recent years,has led to the emergence of several large parameter artificial intelligence weather forecast models.These models represent a significant breakthrough,overcoming the limitations of traditional numerical weather prediction models and indicating the emergence of profound potential tools for atmosphere-ocean forecasts.This study explores the evolution of these advanced artificial intelligence forecast models,and based on the identified commonalities,proposes the“Three Large Rules”for large weather forecast models:a large number of parameters,a large number of predictands,and large potential applications.We discuss the capacity of artificial intelligence to revolutionize numerical weather prediction,briefly outlining the underlying reasons for the significant improvement in weather forecasting.While acknowledging the high accuracy,computational efficiency,and ease of deployment of large artificial intelligence forecast models,we also emphasize the irreplaceable values of traditional numerical forecasts and explore the challenges in the future development of large-scale artificial intelligence atmosphere-ocean forecast models.We believe that the optimal future of atmosphere-ocean weather forecast lies in achieving a seamless integration of artificial intelligence and traditional numerical models.Such a synthesis is anticipated to offer a more advanced and reliable approach for improved atmosphere-ocean forecasts.Finally,we illustrate how forecasters can leverage the large weather forecast models through an example by building an artificial intelligence model for global ocean wave forecast.展开更多
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin...An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.展开更多
A 72-h fine-resolution atmosphere-wave-ocean coupled forecasting system was developed for the South China Sea and its adjacent seas. The forecasting model domain covers from from 15°S to 45°N in latitude and...A 72-h fine-resolution atmosphere-wave-ocean coupled forecasting system was developed for the South China Sea and its adjacent seas. The forecasting model domain covers from from 15°S to 45°N in latitude and 99°E to135°E in longitude including the Bohai Sea, the Yellow Sea, the East China Sea, the South China Sea and the Indonesian seas. To get precise initial conditions for the coupled forecasting model, the forecasting system conducts a 24-h hindcast simulation with data assimilation before forecasting. The Ensemble Adjustment Kalman Filter(EAKF) data assimilation method was adopted for the wave model MASNUM with assimilating Jason-2 significant wave height(SWH) data. The EAKF data assimilation method was also introduced to the ROMS model with assimilating sea surface temperature(SST), mean absolute dynamic topography(MADT) and Argo profiles data. To improve simulation of the structure of temperature and salinity, the vertical mixing scheme of the ocean model was improved by considering the surface wave induced vertical mixing and internal wave induced vertical mixing. The wave and current models were integrated from January 2014 to October 2015 driven by the ECMWF reanalysis 6 hourly mean dataset with data assimilation. Then the coupled atmosphere-wave-ocean forecasting system was carried out 14 months operational running since November 2015. The forecasting outputs include atmospheric forecast products, wave forecast products and ocean forecast products. A series of observation data are used to evaluate the coupled forecasting results, including the wind, SHW, ocean temperature and velocity.The forecasting results are in good agreement with observation data. The prediction practice for more than one year indicates that the coupled forecasting system performs stably and predict relatively accurate, which can support the shipping safety, the fisheries and the oil exploitation.展开更多
Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communit...Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the opti- mization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to imnlement and practieal for real-time wave forecasting.展开更多
The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based earl...The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based early warning system. As a basis for the assessment of the wave-induced hydrodynamic loads, an operational wave now-and forecast system is set up that consists of i) available field measurements from the federal and local authorities and ii) data from numerical simulation of waves in the German Bight using the SWAN wave model. In this study, results of the hindcast of deep water wave conditions during the winter storm on 5–6 December, 2013(German name ‘Xaver') are shown and compared with available measurements. Moreover field measurements of wave run-up from the local authorities at a sea dike on the German North Sea Island of Pellworm are presented and compared against calculated wave run-up using the Eur Otop(2016) approach.展开更多
Owing to the fact that the wind speed and direction of typhoon vary rapidly with time and space in typhoon fetch; the nearer to the typhoon eye the greater the wind velocity, and the shorter the wind fetch the smaller...Owing to the fact that the wind speed and direction of typhoon vary rapidly with time and space in typhoon fetch; the nearer to the typhoon eye the greater the wind velocity, and the shorter the wind fetch the smaller the wind time,as a result,the more difficult for the wind wave to fully grow. Hence.in typhoon wave numerical calculation it is impossible to use the model for a fully grown wave spectrum. Lately, the author et at. presented a CHGS method for numerical forecasting of typhoon waves, where a model for the growing wave spectrum was set up (see Eq. (2) in the text). The model involves a parameter indicating the growing degree of wind wave, i. e. ,the mean wave age β. When βvalue is small, the wave energy is chiefly concentrated near the peak frequency, so that the spectral peak gets high and steep; with the increase of β the spectral shape gradually gets lower and gentler; when β=Ⅰ, the wave fully grows, the growing spectrum becomes a fully grown P-M spectrum. The model also shows a spectral “overshooting” phenomenon within the “balance zone”.展开更多
Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by esta...Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.展开更多
In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digi...In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes.展开更多
A wave forecasting system using FUNWAVE-TVD which is based on the fully nonlinear Boussinesq equations by Chen(2006)was developed to provide an accurate wave prediction in the Port of Busan,South Korea.This system is ...A wave forecasting system using FUNWAVE-TVD which is based on the fully nonlinear Boussinesq equations by Chen(2006)was developed to provide an accurate wave prediction in the Port of Busan,South Korea.This system is linked to the Korea Operational Oceanographic System(KOOS)developed by Park et al.(2015).The computational domain covers a region of 9.6 km×7.0 km with a grid size of 2 m in both directions,which is sufficient to resolve short waves and dominant sea states.The total number of grid points exceeds 16 millions,making the model computational expensive.To provide real-time forecasting,an interpolation method,which is based on pre-calculated results of FUNWAVE-TVD and SWAN forecasting results at the FUNWAVE-TVD offshore boundary,was used.A total of 45 cases were pre-calculated,which took 71 days on 924 computational cores of a Linux cluster system.Wind wave generation and propagation from the deep water were computed using the SWAN in KOOS.SWAN results provided a boundary condition for the FUNWAVE-TVD forecasting system.To verify the model,wave observations were conducted at three locations inside the port in a time period of more than 7 months.A model/model comparison between FUNWAVE-TVD and SWAN was also carried out.It is found that,FUNWAVE-TVD improves the forecasting results significantly compared to SWAN which underestimates wave heights in sheltered areas due to incorrect physical mechanism of wave diffraction,as well as large wave heights caused by wave reflections inside the port.展开更多
[Objective] The aim was to analyze one cold wave weather process in Chengdu in March in 2010.[Method] Based on the NCEP 1°×1° 6 h interval reanalysis data and daily observation data,using synoptic analy...[Objective] The aim was to analyze one cold wave weather process in Chengdu in March in 2010.[Method] Based on the NCEP 1°×1° 6 h interval reanalysis data and daily observation data,using synoptic analysis and diagnosis methods,and combining with the cold wave forecast index in spring of Sichuan,a cold wave event covering the whole region between March 21 and 24,2010 was analyzed from the aspects of circulation background,influencing weather systems and weather causation.[Result] Results showed that the 500 high-altitude cold vortex,700-850 hPa low layer shear,and ground cold front were the main systems that influenced this cold wave;there was a ridge from Lake Balkhash across Lake Baikal at 500 hPa.The early stage of the process was controlled by the high pressure ridge and the temperature was increasing obviously.The daily mean temperature was high.The range of cold high pressure was large and the central intensity was 1 043.0 hPa;the cold air was strong and deep which was in accordance with the strong surface temperature reduction center.The strong north airstream of Lake Balkhash to Lake Baikal,ground cold high pressure center intensity changes,north and south ocean pressure and temperature differences,850 hPa temperature changes,cold advection movement route and intensity were considered as reference factors for the forecast of cold wave intensity.[Conclusion] The study provided theoretical basis for improving the forecast ability of cold wave weather.展开更多
By using the routine weather data and the numerical value forecast products,applying the weather analysis and diagnostic analysis methods,the cold wave weather which happened in the south area of Dalian was analyzed o...By using the routine weather data and the numerical value forecast products,applying the weather analysis and diagnostic analysis methods,the cold wave weather which happened in the south area of Dalian was analyzed on December 29-30,2009.The results showed that based on the temperature rise in prior period,the strong cold air accumulated in Mongolia and passed Ulan Bator,Erenhot to invade Dalian area.In the cold wave process,the circulation situations in the middle and high latitudes were the 'one ridge and one trough' pattern in Asia.The dynamic mechanisms were the rotary low-pressure trough in high altitude and the strong frontal zone,and the flow field which induced the cold wave to break out was the 'low trough rotation pattern'.After the cold air broke out,Dalian area was controlled by the strong cold advection.The cold high-pressure on the ground entered into the key zone and reached the intensity of cold wave.However,the circulation of cold wave occurrence was southerly,and the shifts of cold air and influence system were quicker.Therefore,the cold wave appeared in Dalian's south areas which included Lvshun,Dalian and Jinzhou.On this basis,the key point of cold wave weather forecast in Dalian area was summarized.展开更多
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP214)the National Natural Science Foundation of China(Grant Nos.62071279 and 42206029)the National Key R&D Program of China(Grant No.2020YFA0608804)。
文摘Grid forecasting can be used to effectively enhance the spatial and temporal density of forecast products,thereby improving the capability of short-term marine disaster forecasting and warnings in terms of proximity.The traditional method that relies on forecasters'subjective correction of station observation data for forecasting has been unable to meet the practical needs of refined forecasting.To address this problem,this paper proposes a Transformer-enhanced UNet(TransUNet)model for wave forecast AI correction,which fuses wind and wave information.The Transformer structure is integrated into the encoder of the UNet model,and instead of using the traditional upsampling method,the dual-sampling module is employed in the decoder to enhance the feature extraction capability.This paper compares the TransUNet model with the traditional UNet model using wind speed forecast data,wave height forecast data,and significant wave height reanalysis data provided by ECMWF.The experimental results indicate that the TransUNet model yields smaller root-meansquare errors,mean errors,and standard deviations of the corrected results for the next 24-h forecasts than does the UNet model.Specifically,the root-mean-square error decreased by more than 21.55%compared to its precorrection value.According to the statistical analysis,87.81%of the corrected wave height errors for the next 24-h forecast were within±0.2m,with only 4.56%falling beyond±0.3 m.This model effectively limits the error range and enhances the ability to forecast wave heights.
文摘The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper.
文摘In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The wind-wave part of the proposed model has also been given. Now we proceed to discuss the swell part,the implementation of the model as a prediction method,mumerical experiments done with ideal wind fields and hindcasts made in the Bohai Sea,in the neighboring seas adjacent to China and in the Northwest Pacific.
基金supported by the National Key Research and Development Program of China(No.2018YFC1407002)the National Natural Science Foundation of China(Nos.62071279,41930535)the SDUST Research Fund(No.2019TDJH103).
文摘Numerical models and correct predictions are important for marine forecasting,but the forecasting results are often unable to satisfy the requirements of operational wave forecasting.Because bias between the predictions of numerical models and the actual sea state has been observed,predictions can only be released after correction by forecasters.This paper proposes a spati-otemporal interactive processing bias correction method to correct numerical prediction fields applied to the production and release of operational ocean wave forecasting products.The proposed method combines the advantages of numerical models and Forecast Discussion;specifically,it integrates subjective and objective information to achieve interactive spatiotemporal correc-tions for numerical prediction.The method corrects the single-time numerical prediction field in space by spatial interpolation and sub-zone numerical analyses using numerical model grid data in combination with real-time observations and the artificial judg-ment of forecasters to achieve numerical prediction accuracy.The difference between the original numerical prediction field and the spatial correction field is interpolated to an adjacent time series by successive correction analysis,thereby achieving highly efficient correction for multi-time forecasting fields.In this paper,the significant wave height forecasts from the European Centre for Medium-Range Weather Forecasts are used as background field for forecasting correction and analysis.Results indicate that the proposed method has good application potential for the bias correction of numerical predictions under different sea states.The method takes into account spatial correlations for the numerical prediction field and the time series development of the numerical model to correct numerical predictions efficiently.
基金supported by the National Key Research and Development Program of China[grant number 2020YFA0608000]the National Natural Science Foundation of China[grant number 42030605].
基金This study is supported by the project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2020SP007)the National Natural Science Foundation of China(Nos.61772280 and 62072249).
文摘Though numerical wave models have been applied widely to significant wave height prediction,they consume massive computing memory and their accuracy needs to be further improved.In this paper,a two-dimensional(2D)significant wave height(SWH)prediction model is established for the South and East China Seas.The proposed model is trained by Wave Watch III(WW3)reanalysis data based on a convolutional neural network,the bidirectional long short-term memory and the attention mechanism(CNNBiLSTM-Attention).It adopts the convolutional neural network to extract spatial features of original wave height to reduce the redundant information input into the BiLSTM network.Meanwhile,the BiLSTM model is applied to fully extract the features of the associated information of time series data.Besides,the attention mechanism is used to assign probability weight to the output information of the BiLSTM layer units,and finally,a training model is constructed.Up to 24-h prediction experiments are conducted under normal and extreme conditions,respectively.Under the normal wave condition,for 3-,6-,12-and 24-h forecasting,the mean values of the correlation coefficients on the test set are 0.996,0.991,0.980,and 0.945,respectively.The corresponding mean values of the root mean square errors are measured at 0.063 m,0.105 m,0.172 m,and 0.281 m,respectively.Under the typhoon-forced extreme condition,the model based on CNN-BiLSTM-Attention is trained by typhooninduced SWH extracted from the WW3 reanalysis data.For 3-,6-,12-and 24-h forecasting,the mean values of correlation coefficients on the test set are respectively 0.993,0.983,0.958,and 0.921,and the averaged root mean square errors are 0.159 m,0.257 m,0.437 m,and 0.555 m,respectively.The model performs better than that trained by all the WW3 reanalysis data.The result suggests that the proposed algorithm can be applied to the 2D wave forecast with higher accuracy and efficiency.
基金The Project Supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2020SP007the National Natural Science Foundation of China under contract Nos 42192562 and 62072249.
文摘As wave height is an important parameter in marine climate measurement,its accurate prediction is crucial in ocean engineering.It also plays an important role in marine disaster early warning and ship design,etc.However,challenges in the large demand for computing resources and the improvement of accuracy are currently encountered.To resolve the above mentioned problems,sequence-to-sequence deep learning model(Seq-to-Seq)is applied to intelligently explore the internal law between the continuous wave height data output by the model,so as to realize fast and accurate predictions on wave height data.Simultaneously,ensemble empirical mode decomposition(EEMD)is adopted to reduce the non-stationarity of wave height data and solve the problem of modal aliasing caused by empirical mode decomposition(EMD),and then improves the prediction accuracy.A significant wave height forecast method integrating EEMD with the Seq-to-Seq model(EEMD-Seq-to-Seq)is proposed in this paper,and the prediction models under different time spans are established.Compared with the long short-term memory model,the novel method demonstrates increased continuity for long-term prediction and reduces prediction errors.The experiments of wave height prediction on four buoys show that the EEMD-Seq-to-Seq algorithm effectively improves the prediction accuracy in short-term(3-h,6-h,12-h and 24-h forecast horizon)and long-term(48-h and 72-h forecast horizon)predictions.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608000)the National Natural Science Foundation of China(Grant No.42030605)。
文摘The rapid advancement of artificial intelligence technologies,particularly in recent years,has led to the emergence of several large parameter artificial intelligence weather forecast models.These models represent a significant breakthrough,overcoming the limitations of traditional numerical weather prediction models and indicating the emergence of profound potential tools for atmosphere-ocean forecasts.This study explores the evolution of these advanced artificial intelligence forecast models,and based on the identified commonalities,proposes the“Three Large Rules”for large weather forecast models:a large number of parameters,a large number of predictands,and large potential applications.We discuss the capacity of artificial intelligence to revolutionize numerical weather prediction,briefly outlining the underlying reasons for the significant improvement in weather forecasting.While acknowledging the high accuracy,computational efficiency,and ease of deployment of large artificial intelligence forecast models,we also emphasize the irreplaceable values of traditional numerical forecasts and explore the challenges in the future development of large-scale artificial intelligence atmosphere-ocean forecast models.We believe that the optimal future of atmosphere-ocean weather forecast lies in achieving a seamless integration of artificial intelligence and traditional numerical models.Such a synthesis is anticipated to offer a more advanced and reliable approach for improved atmosphere-ocean forecasts.Finally,we illustrate how forecasters can leverage the large weather forecast models through an example by building an artificial intelligence model for global ocean wave forecast.
基金China-Korea Cooperation Project on the development of oceanic monitoring and prediction system on nuclear safetythe Project of the National Programme on Global Change and Air-sea Interaction under contract No.GASI-03-IPOVAI-05
文摘An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.
基金The National Key Research and Development Program of China under contract No.2017YFC1404201the NSFCShandong Joint Fund for Marine Science Research Centers under contract No.U1606405+1 种基金the SOA Program on Global Change and AirSea Interactions under contract Nos GASI-IPOVAI-03 and GASI-IPOVAI-02the National Natural Science Foundation of China under contract Nos 41606040,41876029,41776016,41706035 and 41606036
文摘A 72-h fine-resolution atmosphere-wave-ocean coupled forecasting system was developed for the South China Sea and its adjacent seas. The forecasting model domain covers from from 15°S to 45°N in latitude and 99°E to135°E in longitude including the Bohai Sea, the Yellow Sea, the East China Sea, the South China Sea and the Indonesian seas. To get precise initial conditions for the coupled forecasting model, the forecasting system conducts a 24-h hindcast simulation with data assimilation before forecasting. The Ensemble Adjustment Kalman Filter(EAKF) data assimilation method was adopted for the wave model MASNUM with assimilating Jason-2 significant wave height(SWH) data. The EAKF data assimilation method was also introduced to the ROMS model with assimilating sea surface temperature(SST), mean absolute dynamic topography(MADT) and Argo profiles data. To improve simulation of the structure of temperature and salinity, the vertical mixing scheme of the ocean model was improved by considering the surface wave induced vertical mixing and internal wave induced vertical mixing. The wave and current models were integrated from January 2014 to October 2015 driven by the ECMWF reanalysis 6 hourly mean dataset with data assimilation. Then the coupled atmosphere-wave-ocean forecasting system was carried out 14 months operational running since November 2015. The forecasting outputs include atmospheric forecast products, wave forecast products and ocean forecast products. A series of observation data are used to evaluate the coupled forecasting results, including the wind, SHW, ocean temperature and velocity.The forecasting results are in good agreement with observation data. The prediction practice for more than one year indicates that the coupled forecasting system performs stably and predict relatively accurate, which can support the shipping safety, the fisheries and the oil exploitation.
基金supported by the European Commission within FP7-THEME 6(Grant No.244104)the Natural Environment Research Council(NERC)of the UK(Grant No.NE/J005541/1)the Ministry of Science and Technology(MOST)of Taiwan(Grant No.MOST 104-2221-E-006-183)
文摘Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the opti- mization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to imnlement and practieal for real-time wave forecasting.
基金the joint research project Early Dike–Sensor and Risk based Early Warning Systems for Coastal Dikes(No.03G0847C)funded by the German Ministry of Education and Research(BMBF)
文摘The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based early warning system. As a basis for the assessment of the wave-induced hydrodynamic loads, an operational wave now-and forecast system is set up that consists of i) available field measurements from the federal and local authorities and ii) data from numerical simulation of waves in the German Bight using the SWAN wave model. In this study, results of the hindcast of deep water wave conditions during the winter storm on 5–6 December, 2013(German name ‘Xaver') are shown and compared with available measurements. Moreover field measurements of wave run-up from the local authorities at a sea dike on the German North Sea Island of Pellworm are presented and compared against calculated wave run-up using the Eur Otop(2016) approach.
基金The research reported was supported by the National Natural Science Foundation of China.
文摘Owing to the fact that the wind speed and direction of typhoon vary rapidly with time and space in typhoon fetch; the nearer to the typhoon eye the greater the wind velocity, and the shorter the wind fetch the smaller the wind time,as a result,the more difficult for the wind wave to fully grow. Hence.in typhoon wave numerical calculation it is impossible to use the model for a fully grown wave spectrum. Lately, the author et at. presented a CHGS method for numerical forecasting of typhoon waves, where a model for the growing wave spectrum was set up (see Eq. (2) in the text). The model involves a parameter indicating the growing degree of wind wave, i. e. ,the mean wave age β. When βvalue is small, the wave energy is chiefly concentrated near the peak frequency, so that the spectral peak gets high and steep; with the increase of β the spectral shape gradually gets lower and gentler; when β=Ⅰ, the wave fully grows, the growing spectrum becomes a fully grown P-M spectrum. The model also shows a spectral “overshooting” phenomenon within the “balance zone”.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0405401)the National Science&Technology Pillar Program(Grant No.2012BAB03B01)+1 种基金the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2014B30914)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)
文摘Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.
基金National Natural Science Foundation of China (40274011 40074020) MOST (2001BA601B02) and Joint Seis-mological Science Foundation of China (102068).
文摘In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes.
基金The Project of Development on Technology for Offshore Waste Final Disposalthe Project of Investigation of Large Swell Waves and Rip Currents and Development of the Disaster Response System
文摘A wave forecasting system using FUNWAVE-TVD which is based on the fully nonlinear Boussinesq equations by Chen(2006)was developed to provide an accurate wave prediction in the Port of Busan,South Korea.This system is linked to the Korea Operational Oceanographic System(KOOS)developed by Park et al.(2015).The computational domain covers a region of 9.6 km×7.0 km with a grid size of 2 m in both directions,which is sufficient to resolve short waves and dominant sea states.The total number of grid points exceeds 16 millions,making the model computational expensive.To provide real-time forecasting,an interpolation method,which is based on pre-calculated results of FUNWAVE-TVD and SWAN forecasting results at the FUNWAVE-TVD offshore boundary,was used.A total of 45 cases were pre-calculated,which took 71 days on 924 computational cores of a Linux cluster system.Wind wave generation and propagation from the deep water were computed using the SWAN in KOOS.SWAN results provided a boundary condition for the FUNWAVE-TVD forecasting system.To verify the model,wave observations were conducted at three locations inside the port in a time period of more than 7 months.A model/model comparison between FUNWAVE-TVD and SWAN was also carried out.It is found that,FUNWAVE-TVD improves the forecasting results significantly compared to SWAN which underestimates wave heights in sheltered areas due to incorrect physical mechanism of wave diffraction,as well as large wave heights caused by wave reflections inside the port.
文摘[Objective] The aim was to analyze one cold wave weather process in Chengdu in March in 2010.[Method] Based on the NCEP 1°×1° 6 h interval reanalysis data and daily observation data,using synoptic analysis and diagnosis methods,and combining with the cold wave forecast index in spring of Sichuan,a cold wave event covering the whole region between March 21 and 24,2010 was analyzed from the aspects of circulation background,influencing weather systems and weather causation.[Result] Results showed that the 500 high-altitude cold vortex,700-850 hPa low layer shear,and ground cold front were the main systems that influenced this cold wave;there was a ridge from Lake Balkhash across Lake Baikal at 500 hPa.The early stage of the process was controlled by the high pressure ridge and the temperature was increasing obviously.The daily mean temperature was high.The range of cold high pressure was large and the central intensity was 1 043.0 hPa;the cold air was strong and deep which was in accordance with the strong surface temperature reduction center.The strong north airstream of Lake Balkhash to Lake Baikal,ground cold high pressure center intensity changes,north and south ocean pressure and temperature differences,850 hPa temperature changes,cold advection movement route and intensity were considered as reference factors for the forecast of cold wave intensity.[Conclusion] The study provided theoretical basis for improving the forecast ability of cold wave weather.
文摘By using the routine weather data and the numerical value forecast products,applying the weather analysis and diagnostic analysis methods,the cold wave weather which happened in the south area of Dalian was analyzed on December 29-30,2009.The results showed that based on the temperature rise in prior period,the strong cold air accumulated in Mongolia and passed Ulan Bator,Erenhot to invade Dalian area.In the cold wave process,the circulation situations in the middle and high latitudes were the 'one ridge and one trough' pattern in Asia.The dynamic mechanisms were the rotary low-pressure trough in high altitude and the strong frontal zone,and the flow field which induced the cold wave to break out was the 'low trough rotation pattern'.After the cold air broke out,Dalian area was controlled by the strong cold advection.The cold high-pressure on the ground entered into the key zone and reached the intensity of cold wave.However,the circulation of cold wave occurrence was southerly,and the shifts of cold air and influence system were quicker.Therefore,the cold wave appeared in Dalian's south areas which included Lvshun,Dalian and Jinzhou.On this basis,the key point of cold wave weather forecast in Dalian area was summarized.