We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,...We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,we get the interactional solutions between first-order rogue wave and one-dark,one-bright soliton respectively.Meanwhile,the interactional solutions between one-breather and first-order rogue wave are also given.In second-order localized wave,one-dark-one-bright soliton together with second-order rogue wave is presented in the first component,and two-bright soliton together with second-order rogue wave are gained respectively in the other two components.Besides,we observe second-order rogue wave together with one-breather in three components.Moreover,by increasing the absolute values of two free parameters,the nonlinear waves merge with each other distinctly.These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system.展开更多
Three(2+1)-dimensional equations–KP equation, cylindrical KP equation and spherical KP equation, have been reduced to the same Kd V equation by different transformation of variables respectively. Since the single sol...Three(2+1)-dimensional equations–KP equation, cylindrical KP equation and spherical KP equation, have been reduced to the same Kd V equation by different transformation of variables respectively. Since the single solitary wave solution and 2-solitary wave solution of the Kd V equation have been known already, substituting the solutions of the Kd V equation into the corresponding transformation of variables respectively, the single and 2-solitary wave solutions of the three(2+1)-dimensional equations can be obtained successfully.展开更多
In this paper, the Poussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Mean...In this paper, the Poussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Meanwhile, a Boussinesq wave model which includes effects of bottom friction, wave breaking and subgrid turbulent mixing is established, slot technique dealing with moving boundary and damping layer dealing with absorbing boundary were estab lished. By adopting empirical nonlinear dispersion relation and including nonlinear term, the mild-slope equation model was modified to take nonlinear effects into account. The two types of models were validated with the experiment results given by Berkhoff and their accuracy was analysed and compared with that of correlated methods.展开更多
基金Project supported by the Global Change Research Program of China(Grant No.2015CB953904)the National Natural Science Foundation of China(Grant Nos.11275072 and 11435005)+2 种基金the Doctoral Program of Higher Education of China(Grant No.20120076110024)the Network Information Physics Calculation of Basic Research Innovation Research Group of China(Grant No.61321064)Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things,China(Grant No.ZF1213)
文摘We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,we get the interactional solutions between first-order rogue wave and one-dark,one-bright soliton respectively.Meanwhile,the interactional solutions between one-breather and first-order rogue wave are also given.In second-order localized wave,one-dark-one-bright soliton together with second-order rogue wave is presented in the first component,and two-bright soliton together with second-order rogue wave are gained respectively in the other two components.Besides,we observe second-order rogue wave together with one-breather in three components.Moreover,by increasing the absolute values of two free parameters,the nonlinear waves merge with each other distinctly.These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system.
基金Supported by the National Natural Science Foundation of China under Grant No.11301153the Doctoral Foundation of Henan University of Science and Technology under Grant No.09001562the Science and Technology Innovation Platform of Henan University of Science and Technology under Grant No.2015XPT001
文摘Three(2+1)-dimensional equations–KP equation, cylindrical KP equation and spherical KP equation, have been reduced to the same Kd V equation by different transformation of variables respectively. Since the single solitary wave solution and 2-solitary wave solution of the Kd V equation have been known already, substituting the solutions of the Kd V equation into the corresponding transformation of variables respectively, the single and 2-solitary wave solutions of the three(2+1)-dimensional equations can be obtained successfully.
文摘In this paper, the Poussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Meanwhile, a Boussinesq wave model which includes effects of bottom friction, wave breaking and subgrid turbulent mixing is established, slot technique dealing with moving boundary and damping layer dealing with absorbing boundary were estab lished. By adopting empirical nonlinear dispersion relation and including nonlinear term, the mild-slope equation model was modified to take nonlinear effects into account. The two types of models were validated with the experiment results given by Berkhoff and their accuracy was analysed and compared with that of correlated methods.