Investigation of the propagation of the wave in SAW sensors is a basis for the research and design of the sensors. With the advance of the sensor, both the effect of environment on the surface ply and the geometry of ...Investigation of the propagation of the wave in SAW sensors is a basis for the research and design of the sensors. With the advance of the sensor, both the effect of environment on the surface ply and the geometry of waveguide are complicated. To consider the complication, a model with gradient surface ply and multilayer waveguide of SH wave propagation in sensor is proposed. The equation of wave velocity is derived by a transfer matrix method. Through the equation, the function of wave velocity increment via the change of parameters in the surface ply is obtained. The effect of the inhomogeneity on the function is also studied. Finally, some influencing factors of the behavior of the sensor are discussed.展开更多
In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET...In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not.展开更多
A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.The...A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.Then,an electrochemical sensor modified with Co-MOF on a glassy carbon electrode(Co-MOF@GCE)was constructed for detecting Cd^(2+)and Pb^(2+)in aqueous solutions.The sensor exhibited a linear range of 1.0-16.0µmol·L^(-1)with a detection limit(LOD)of 4.609 nmol·L^(-1)for Cd^(2+),and 0.5-10.0µmol·L^(-1)with an LOD of 1.307 nmol·L^(-1)for Pb^(2+).Simultaneous detection of both ions within 0.5-7.0µmol·L^(-1)achieved LOD values of 0.47 nmol·L^(-1)(Cd^(2+))and 0.008 nmol·L^(-1)(Pb^(2+)),respectively.Analysis of real water samples(tap water,mineral water,and river water)yielded recoveries of 95%-105%,validating practical applicability.Density functional theory(DFT)calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency.CCDC:2160744.展开更多
High-performance flexible pressure sensors have garnered significant attention in fields such as wearable electronics and human-machine interfaces.However,the development of flexible pressure sensors that simultaneous...High-performance flexible pressure sensors have garnered significant attention in fields such as wearable electronics and human-machine interfaces.However,the development of flexible pressure sensors that simultaneously achieve high sensitivity,a wide detection range,and good mechanical stability remains a challenge.In this paper,we propose a flexible piezoresistive pressure sensor based on a Ti_(3)C_(2)Tx(MXene)/polyethylene oxide(PEO)composite nanofiber membrane(CNM).The sensor,utilizing MXene(0.4 wt%)/PEO(5 wt%),exhibits high sensitivity(44.34 kPa^(−1)at 0−50 kPa,12.99 kPa^(−1)at 50−500 kPa)and can reliably monitor physiological signals and other subtle cues.Moreover,the sensor features a wide detection range(0−500 kPa),fast response and recovery time(~150/45 ms),and excellent mechanical stability(over 10000 pressure cycles at maximum load).Through an MXene/PEO sensor array,we demonstrate its applications in human physiological signal monitoring,providing a reliable way to expand the application of MXene-based flexible pressure sensors.展开更多
In a recent study,Prof.Rui Min and collaborators published their paper in the journal of Opto-Electronic Science that is entitled"Smart photonic wristband for pulse wave monitoring".The paper introduces nove...In a recent study,Prof.Rui Min and collaborators published their paper in the journal of Opto-Electronic Science that is entitled"Smart photonic wristband for pulse wave monitoring".The paper introduces novel realization of a sensor that us-es a polymer optical multi-mode fiber to sense pulse wave bio-signal from a wrist by analyzing the specklegram mea-sured at the output of the fiber.Applying machine learning techniques over the pulse wave signal allowed medical diag-nostics and recognizing different gestures with accuracy rate of 95%.展开更多
Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature ...Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.展开更多
In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the ...In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.展开更多
Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on...Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on defect testing results by using stress wave in terms of image fitting degree and error rate. The results showed that for logs with diameter ranging from 20 to 40 cm, at least 12 sensors were needed to meet the requirement which ensure a high testing accuracy of roughly 90% of fitness with 0.1 of error rate. And 10 sensors were recommended to judge the possible locations of defects and 6 sensors were sufficient to decide whether there were defects or not.展开更多
Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into ...Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.展开更多
The ultra-long electromagnetic wave remote sensing technique developed by Peking University is one of new future techniques, which can detect the submarine geological information from the depth of 20 to 10000 m below ...The ultra-long electromagnetic wave remote sensing technique developed by Peking University is one of new future techniques, which can detect the submarine geological information from the depth of 20 to 10000 m below the surface by receiving natural ultra-long electromagnetic waves (n Hz to n 100 Hz). The new remote sensor is composed of three parts: a main instrument with a portable computer, an antenna with an amplifier and an external power.展开更多
An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are h...An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are hence deduced. Using the real part of shear modulus, the polymer can be classified into three types: glassy film, glassy-rubbery film and rubbery film, Experimental results show that the attenuation response is in better consistence with the simulation than in Martin's theory, but the velocity response does not accord with the calculation exactly. Maybe it is influenced by the experimental methods and environment. In addition, simulations of gas sorption for polymer films are performed. As for glassy film, the SAW sensor response increases with increasing fihn thickness, and the relationship between the sensor response and the concentration of gas is pretty linear, while as for glassy-rubbery flint and rubbery film, the relationship between the sensor sensitivity anti concentration of gas is very complicated. The ultimately calculated results indicate that the relationship between the sensor response and frequency is not always linear due to the viscoelastic prooerties of the polymer.展开更多
Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The s...Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The sensor consists of a 1μm thick silicon nitride (SiN_y) intermediate layer deposited by electron beam evaporation on a 36°Y-cut X-propagating piezoelectric lithium tantalate (LiTaO_3) substrate and a 100 nm thin indium oxide (InO_x) sensing layer deposited by R.F.magnetron sputtering.The device fabrication is described and the performance of the sensor is analyzed in terms of response magnitude as a function of operating temperature.Large frequency shifts of 360 kHz for 600μg/g of H_2 and 92 kHz for 40 ng/g O_3 were recorded.In addition,the surface morphology of the deposited films were investigated by Atomic Force Microscopy (AFM) and the chemical composition by X-Ray Photoelectron Spectroscopy (XPS) to correlate gas-sensing behavior to structural characteristics of the thin film.展开更多
We report the first use of organic semiconductors (OSCs)-coated PAN nanofibrous mats as highly responsive fluorescence quenching-based chemosensors for 2,4,6-trinitrotoluene (TNT) and H2O2 detection in vapor phase...We report the first use of organic semiconductors (OSCs)-coated PAN nanofibrous mats as highly responsive fluorescence quenching-based chemosensors for 2,4,6-trinitrotoluene (TNT) and H2O2 detection in vapor phase. Conjugated polymers, poly(triphenylaminealt-biphenylene vinylene) (TPA- PBPV), and small organic molecules, l-horonic-ester pyrene and 1,6-bisboron-ester pyrene, were coated onto the nanofibers fabricated by electrospinning. By introducing the nanofibers structure, a 9-fold fluorescence intensity enhancement and a 14-fold sensitivity enhancement were achieved, which could be attributed to its high area-to-volume ratio, excellent gas permeability, and more importantly, the evanescent-wave effect occurred once the diameters of the fibers were small enough. Since the organic semiconductors coated onto the nanofibrous mats could be replaced by other functional materials, the nanofibers-enhanced detection strategies could be extended to more general domains including chemical and environmental detection.展开更多
In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a ...In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.展开更多
This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a...This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a wave glider that collects data from the underwater network segment and retransmits it to the processing center.The authors consider the joint problem of optimal localization of stationary network nodes and the corresponding model for bypassing reference nodes by a wave glider.The optimality of the network is evaluated according to the criteria of energy efficiency and reliability.The influence of various physical and technical parameters of the network on its energy efficiency and on the lifespan of sensor nodes is analyzed.The analysis is carried out for networks of various scales,depending on the localization of stationary nodes and the model of bypassing the network with a wave glider.As a model example,the simulation of the functional characteristics of the network for a given size of the water area is carried out.It is shown that in the case of a medium-sized water area,the model of“bypassing the perimeter”by a wave glider is practically feasible,energy efficient and reliable for hourly data measurements.In the case of a large water area,the cluster bypass model becomes more efficient.展开更多
In this paper,general principle of the Surface Acoustic Wave(SAW) sensor in wired and wireless con-figurations will be developed and a review of recent works concerning the field of high temperature applications will ...In this paper,general principle of the Surface Acoustic Wave(SAW) sensor in wired and wireless con-figurations will be developed and a review of recent works concerning the field of high temperature applications will be presented.The first part will be devoted to aspects of data transmission and processing.Both configurations of SAW de-vice,delay line and resonator,will be discussed as well as the remote interrogation techniques used to collect and to proc-ess signal.The second part will be devoted to the material aspects.Indeed,knowing that the conventional piezoelectric substrates such as quartz or lithium niobate cannot be used at high temperature,the choice of the material constituting the SAW device(substrate & electrodes) is one of the challenges to face.We will focus our discussion on the Langasite,the current reference for high temperature applications,and on the AlN/Sapphire structure,the very promising alternative for application where the use of high frequency is required.展开更多
基金This study was supported by the National Natural Science Foundation of China (No. 59635140)the Doctoral Education Foundation of the Ministry of Education of ChinaAeronautics Foundation of China.
文摘Investigation of the propagation of the wave in SAW sensors is a basis for the research and design of the sensors. With the advance of the sensor, both the effect of environment on the surface ply and the geometry of waveguide are complicated. To consider the complication, a model with gradient surface ply and multilayer waveguide of SH wave propagation in sensor is proposed. The equation of wave velocity is derived by a transfer matrix method. Through the equation, the function of wave velocity increment via the change of parameters in the surface ply is obtained. The effect of the inhomogeneity on the function is also studied. Finally, some influencing factors of the behavior of the sensor are discussed.
基金This work was supported in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University(No.2023D11)in part by Sponsored by program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT019)+2 种基金in part by Natural Science Foundation of Henan Province(20232300421097)in part by the project funded by China Postdoctoral Science Foundation(2020M682345)in part by the Henan Postdoctoral Foundation(202001015).
文摘In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not.
文摘A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.Then,an electrochemical sensor modified with Co-MOF on a glassy carbon electrode(Co-MOF@GCE)was constructed for detecting Cd^(2+)and Pb^(2+)in aqueous solutions.The sensor exhibited a linear range of 1.0-16.0µmol·L^(-1)with a detection limit(LOD)of 4.609 nmol·L^(-1)for Cd^(2+),and 0.5-10.0µmol·L^(-1)with an LOD of 1.307 nmol·L^(-1)for Pb^(2+).Simultaneous detection of both ions within 0.5-7.0µmol·L^(-1)achieved LOD values of 0.47 nmol·L^(-1)(Cd^(2+))and 0.008 nmol·L^(-1)(Pb^(2+)),respectively.Analysis of real water samples(tap water,mineral water,and river water)yielded recoveries of 95%-105%,validating practical applicability.Density functional theory(DFT)calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency.CCDC:2160744.
基金support from Beijing Natural Science Foundation−Xiaomi Innovation Joint Fund(Grant No.L233009)the National Natural Science Foundation of China(NSFC Grant Nos.62422409,62174152 and 62374159)from the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2020115).
文摘High-performance flexible pressure sensors have garnered significant attention in fields such as wearable electronics and human-machine interfaces.However,the development of flexible pressure sensors that simultaneously achieve high sensitivity,a wide detection range,and good mechanical stability remains a challenge.In this paper,we propose a flexible piezoresistive pressure sensor based on a Ti_(3)C_(2)Tx(MXene)/polyethylene oxide(PEO)composite nanofiber membrane(CNM).The sensor,utilizing MXene(0.4 wt%)/PEO(5 wt%),exhibits high sensitivity(44.34 kPa^(−1)at 0−50 kPa,12.99 kPa^(−1)at 50−500 kPa)and can reliably monitor physiological signals and other subtle cues.Moreover,the sensor features a wide detection range(0−500 kPa),fast response and recovery time(~150/45 ms),and excellent mechanical stability(over 10000 pressure cycles at maximum load).Through an MXene/PEO sensor array,we demonstrate its applications in human physiological signal monitoring,providing a reliable way to expand the application of MXene-based flexible pressure sensors.
文摘In a recent study,Prof.Rui Min and collaborators published their paper in the journal of Opto-Electronic Science that is entitled"Smart photonic wristband for pulse wave monitoring".The paper introduces novel realization of a sensor that us-es a polymer optical multi-mode fiber to sense pulse wave bio-signal from a wrist by analyzing the specklegram mea-sured at the output of the fiber.Applying machine learning techniques over the pulse wave signal allowed medical diag-nostics and recognizing different gestures with accuracy rate of 95%.
基金The National Natural Science Foundation of China(No.60977038)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110016)+1 种基金the National Basic Research Program of China(973Program)(No.2011CB302004)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education of China(No.201204)
文摘Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.
基金The 11th Postgraduate Technology Innovation Project of North University of China(No.20141147)
文摘In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.
基金This paper was supported by the project "Devel-opment of Portable NDT Instrument (2002(39-1))" sponsored by Na-tional Forestry Administrative Bureau of China
文摘Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on defect testing results by using stress wave in terms of image fitting degree and error rate. The results showed that for logs with diameter ranging from 20 to 40 cm, at least 12 sensors were needed to meet the requirement which ensure a high testing accuracy of roughly 90% of fitness with 0.1 of error rate. And 10 sensors were recommended to judge the possible locations of defects and 6 sensors were sufficient to decide whether there were defects or not.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274037 and 61301046)the Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120101110031 and 20120101110054)
文摘Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.
文摘The ultra-long electromagnetic wave remote sensing technique developed by Peking University is one of new future techniques, which can detect the submarine geological information from the depth of 20 to 10000 m below the surface by receiving natural ultra-long electromagnetic waves (n Hz to n 100 Hz). The new remote sensor is composed of three parts: a main instrument with a portable computer, an antenna with an amplifier and an external power.
基金This work was supported by National Natural Science Foundation (No. 10374100).
文摘An analysis of the response of surface acoustic wave sensors coated with polymer film based on new coating deposition (self-assemble and molecularly imprinted technology) is described and the response formulas are hence deduced. Using the real part of shear modulus, the polymer can be classified into three types: glassy film, glassy-rubbery film and rubbery film, Experimental results show that the attenuation response is in better consistence with the simulation than in Martin's theory, but the velocity response does not accord with the calculation exactly. Maybe it is influenced by the experimental methods and environment. In addition, simulations of gas sorption for polymer films are performed. As for glassy film, the SAW sensor response increases with increasing fihn thickness, and the relationship between the sensor response and the concentration of gas is pretty linear, while as for glassy-rubbery flint and rubbery film, the relationship between the sensor sensitivity anti concentration of gas is very complicated. The ultimately calculated results indicate that the relationship between the sensor response and frequency is not always linear due to the viscoelastic prooerties of the polymer.
文摘Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The sensor consists of a 1μm thick silicon nitride (SiN_y) intermediate layer deposited by electron beam evaporation on a 36°Y-cut X-propagating piezoelectric lithium tantalate (LiTaO_3) substrate and a 100 nm thin indium oxide (InO_x) sensing layer deposited by R.F.magnetron sputtering.The device fabrication is described and the performance of the sensor is analyzed in terms of response magnitude as a function of operating temperature.Large frequency shifts of 360 kHz for 600μg/g of H_2 and 92 kHz for 40 ng/g O_3 were recorded.In addition,the surface morphology of the deposited films were investigated by Atomic Force Microscopy (AFM) and the chemical composition by X-Ray Photoelectron Spectroscopy (XPS) to correlate gas-sensing behavior to structural characteristics of the thin film.
基金the financial support from the National Natural Science Foundation of China(Nos.51003118, 21273267)the Research Programs from the Ministry of Science and Technology of China(No.2012BAK06B03)+1 种基金the Shanghai Science and Technology Committee(No.11JC1414700)the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University
文摘We report the first use of organic semiconductors (OSCs)-coated PAN nanofibrous mats as highly responsive fluorescence quenching-based chemosensors for 2,4,6-trinitrotoluene (TNT) and H2O2 detection in vapor phase. Conjugated polymers, poly(triphenylaminealt-biphenylene vinylene) (TPA- PBPV), and small organic molecules, l-horonic-ester pyrene and 1,6-bisboron-ester pyrene, were coated onto the nanofibers fabricated by electrospinning. By introducing the nanofibers structure, a 9-fold fluorescence intensity enhancement and a 14-fold sensitivity enhancement were achieved, which could be attributed to its high area-to-volume ratio, excellent gas permeability, and more importantly, the evanescent-wave effect occurred once the diameters of the fibers were small enough. Since the organic semiconductors coated onto the nanofibrous mats could be replaced by other functional materials, the nanofibers-enhanced detection strategies could be extended to more general domains including chemical and environmental detection.
基金Funded by the National Natural Science Foundation of China (No.50708065)the National High-tech R&D Program(863 Program )(No.2007-AA-11-Z-113)the Key Projects in the Science and Technology Pillar Program of Tianjin(No.11ZCKFSF00300)
文摘In order to monitor the basic mechanical properties and interior damage of concrete structures,the piezoelectric actuator/sensor based wave propagation method was investigated experimentally in the laboratory using a specifically designed test setup.The energy attenuation of stress waves was measured by the relative index between the output voltage of sensors and the excitation voltage at the actuator.Based on the experimental results of concrete cube and cylinder specimens,the effect of excitation frequencies,excitation amplitude,wave propagation paths and the curing age on the output signals of sensors are evaluated.The results show that the relative voltage attenuation coefficient RVAC is an effective indicator for measuring the attenuation of stress waves through the interior of concrete.
基金The research was partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program:Advanced Digital Technologies(Contract No.075-15-2020-903 dated 16.11.2020).
文摘This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a wave glider that collects data from the underwater network segment and retransmits it to the processing center.The authors consider the joint problem of optimal localization of stationary network nodes and the corresponding model for bypassing reference nodes by a wave glider.The optimality of the network is evaluated according to the criteria of energy efficiency and reliability.The influence of various physical and technical parameters of the network on its energy efficiency and on the lifespan of sensor nodes is analyzed.The analysis is carried out for networks of various scales,depending on the localization of stationary nodes and the model of bypassing the network with a wave glider.As a model example,the simulation of the functional characteristics of the network for a given size of the water area is carried out.It is shown that in the case of a medium-sized water area,the model of“bypassing the perimeter”by a wave glider is practically feasible,energy efficient and reliable for hourly data measurements.In the case of a large water area,the cluster bypass model becomes more efficient.
基金supported by the REGION LORRAINE,Contrat Projet Etat Région 2007~2013Ple de Recherche Scientifique et Technologique.Matériaux,Energie,Procédés,Produits:Matériaux fonctionnels micro-et nanostructurés pour la réalisation de micro-et nanosystèmes."
文摘In this paper,general principle of the Surface Acoustic Wave(SAW) sensor in wired and wireless con-figurations will be developed and a review of recent works concerning the field of high temperature applications will be presented.The first part will be devoted to aspects of data transmission and processing.Both configurations of SAW de-vice,delay line and resonator,will be discussed as well as the remote interrogation techniques used to collect and to proc-ess signal.The second part will be devoted to the material aspects.Indeed,knowing that the conventional piezoelectric substrates such as quartz or lithium niobate cannot be used at high temperature,the choice of the material constituting the SAW device(substrate & electrodes) is one of the challenges to face.We will focus our discussion on the Langasite,the current reference for high temperature applications,and on the AlN/Sapphire structure,the very promising alternative for application where the use of high frequency is required.