We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a n...A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.展开更多
In recent years,the exploitation of offshore wind resources has been attached with greater importance.As a result,semi-submersible floating wind turbines(FWTs)have gradually become a popular research topic,with the st...In recent years,the exploitation of offshore wind resources has been attached with greater importance.As a result,semi-submersible floating wind turbines(FWTs)have gradually become a popular research topic,with the structural strength being a research hotspot as it can ensure the safe operation of FWTs.The severe sea conditions of freak waves result in enormous wave heights,extremely fast wave speeds,and concentrated energy.Thus,it is difficult to accurately simulate these effects on the loads of floating wind turbines using the potential flow theory and other theories.In this paper,the structural strength of a floating wind turbine under the action of freak waves is analyzed based on the CFD-FEA coupled method.The effects of the mooring system and the wind load are considered in the time domain,and the CFD method is applied to analyze the wave load of the floating wind turbine under the extreme sea state of freak waves.The strength and motion of the floating wind turbine float structure are analyzed by combining the CFD method and the FEA method,and the analytical results of the mutual transfer of these two methods are taken as the initial quantities for further analysis.The accuracy of the analytical model of the CFD-FEA method is verified by the results of the tank test analysis,and the structural strength analysis under freak wave conditions is carried out for a new type of floating wind turbine.The results of this research provide useful guidance and references for the design and engineering applications of offshore floating wind turbines.展开更多
The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical mo...The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.展开更多
Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea...Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.展开更多
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance elec...With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance electromagnetic wave(EMW)ab-sorbers is an effective method to solve the above issue and has attracted the attention of many researchers.As a typical magnetic material,ferrite plays an important role in the design of high-performance EMW absorbers,and related research focuses on diversified synthesis methods,strong absorption performance,and refined microstructure development.Herein,we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method,sol-gel method,chemical coprecipitation method,and solvent thermal method in the preparation of high-performance EMW absorbers.This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods.It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite.展开更多
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri...The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.展开更多
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re...Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.展开更多
Wave shoaling,which involves an increase in wave amplitude due to changes in water depth,can damage shore-lines.To mitigate this damage,we propose using porous structures such as mangrove forests.In this study,we use ...Wave shoaling,which involves an increase in wave amplitude due to changes in water depth,can damage shore-lines.To mitigate this damage,we propose using porous structures such as mangrove forests.In this study,we use a mathematical model to examine how mangroves,acting as porous breakwater,can reduce wave shoaling amplitude.The shallow water equations are used as the governing equations and are modified to account for the presence of porous media.To measure the wave reduction generated by the porous media,the wave transmis-sion coefficient is estimated using analytical and numerical approaches.The separation of variables method and the staggered finite volume method are utilized for each approach,respectively.The numerical results are then validated against the previously obtained analytical solutions.We then vary the friction and porosity parame-ters-determined by the presence and extent of porous media,to evaluate their effectiveness in reducing wave shoaling.展开更多
In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,...In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,turning motion,and turning motion with different radi by the voltage differential driving method.A prototype with a weight of 38 g and dimensions of 150×80×31 mm^(3) was fabricated.Firstly,the dynamics and kinematics of the piezoelectric robot were analyzed to obtain the trajectory of a point at the end of the piezoelectric robot leg.The motion principle of the piezo-electric robot was analyzed,and then the piezoelectric robot's modal analysis and harmonic response analysis were carried out using finite element analysis software.Finally,an experimental setup was built to verify the effectiveness and high efficiency of the robot's motion,and the effects of frequency,voltage,load,and height of the driving leg on the robot's motion performance were discussed.The performance test results show that the piezoelectric robot has a maximum veloc-ity of 66.79 mm/s at an excitation voltage of 320 V and a load capacity of 55 g.In addition,the H-BPR with unequal drive legs has better climbing performance,and the obtained conclusions are informative for selecting leg heights for piezoelectric robots.展开更多
The present study investigates the wavespace of Highly Contrasted Structures(HCS)and Highly Dissipative Structures(HDS)by wave-based models.The Asymptotic Homogenization Method(AHM),exploits the asymptotic Zig-Zag mod...The present study investigates the wavespace of Highly Contrasted Structures(HCS)and Highly Dissipative Structures(HDS)by wave-based models.The Asymptotic Homogenization Method(AHM),exploits the asymptotic Zig-Zag model and homogenization technique to compute the bending wavenumbers via a 6th-order equation.The General Laminate Model(GLM)employs Mindlin’s displacement field to establish displacement-constraint relationships and resolves a quadratic Eigenvalue Problem(EVP)of the dispersion relation.The Wave Finite Element(WFE)scheme formulates the Nonlinear Eigenvalue Problem(NEP)for waves in varying directions and tracks complex wavenumbers using Weighted Wave Assurance Criteria(WWAC).Two approaches are introduced to estimate the Damping Loss Factor(DLF)of HDS,with the average DLF calculated by the modal density at various angles where non-homogeneity is present.Evaluation of robustness and accuracy is made by comparing the wavenumbers and DLF obtained from AHM and GLM with WFE.WFE is finally extended to a sandwich metastructure with a non-homogeneous core,and the Power Input Method(PIM)with Finite Element Method(FEM)data is employed to assess the average DLF,demonstrating an enhanced DLF compared to layered configurations with the same material portion,indicating increased energy dissipation due to the bending-shear coupling effects.展开更多
This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform(IFFT).Considering the substantial displacement effects that Floating Offshore...This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform(IFFT).Considering the substantial displacement effects that Floating Offshore Wind Turbine(FOWT)support structures undergo when subjected to wave loads,the time-domain wave method is more suitable,while the frequency-domain method requiring IFFT cannot be used for moving bodies.Nonetheless,the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle.Thus,the paper incorporates various numerical schemes,including parallel computing and extrapolation of wave forces during specific time steps to improve overall efficiency.Despite the effectiveness of these schemes,the computational difficulties associated with the time-domain wave method persist.This study then proposes an innovative approach utilizing different randomnumbers in distinct segments,significantly reducing the computation of second-order wave loads.This random number interpolation ensures a smooth curve transition between two segments,emphasizingminimizing errors near the end of the first segment.Numerical analyses demonstrate substantial decreases in total computer time for FOWT structural analyses while maintaining consistent steel design results.The proposed method is uncomplicated,requiring only a simple subprogram modification in a conventional wave load computer program.展开更多
This paper studies the bandgap characteristics of a locally resonant metamaterial beam with time delays.The dispersion relations are addressed based on transfer matrix method.The governing equations of motion of the b...This paper studies the bandgap characteristics of a locally resonant metamaterial beam with time delays.The dispersion relations are addressed based on transfer matrix method.The governing equations of motion of the beam in the frequency domain are given according to spectral element method.The amplitude-frequency responses of the forced beam are determined by solving linear algebraic equations.The obtained results show that the time-delayed feedback control has great relationships with the location,width and number of the bandgaps.It is interesting that the time delay can change the direction of the movement of the bandgap and give rise to the generation of multiple bandgaps.The influences of different combinations of control parameters on the bandgap properties are shown,such as broadening effects.展开更多
Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with C...Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst.展开更多
The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach...The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach to derive exact traveling wave solutions for the coupled Boussinesq equation.The solutions are articulated through soliton,trigonometric,rational,and Jacobi elliptic functions.Notably,the introduction of Jacobi elliptic function solutions for this model marks a pioneering advancement.Contour plots of the solutions obtained by assigning values to various parameters are generated and subsequently analyzed.The methodology proposed in this study offers a systematic means to tackle nonlinear partial differential equations in mathematical physics,thereby enhancing comprehension of the physical attributes and dynamics of water waves.展开更多
In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface...In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface,such grids are unsuitable to realize the free boundary condition.They also easily generate false scattered waves at the corners of the grids owing to the approximation of the stepped grids.These issues affect the simulation accuracy.This study introduces an orthogonal body-fitted grid generation technique in computational fl uid dynamics for generating grids in transversely isotropic(TI)media under an irregular surface.The fi rst-order velocity-stress equation in curvilinear coordinates is calculated using the optimized nonstaggered grids finite difference method.The point oscillation generated by the nonstaggered grids difference is eliminated by selective filtering.The orthogonal body-fitted grids can accurately describe the irregular surface.Further,the orthogonality of the grids allows the implementation of free boundary conditions without complicated coordinate transformation and interpolation operations.Numerical examples show that the numerical solutions obtained by this method agree well with the analytical solutions.By comparing the simulation results of the proposed method with those of the regular grid difference method,the proposed method can eff ectively eliminate the false scattered waves caused by the stepped grids under the condition of the same grid spacing.Thus,the accuracy of the numerical simulation is improved.In addition,the simulation results of the three-layer TI media model on an irregular surface show that the proposed method is also suitable for complex models.展开更多
The worsening of global warming due to burning fossil fuels and the global energy crisis have led to an urgent need for renewable and clean energy sources that have little impact on the environment.One of the most imp...The worsening of global warming due to burning fossil fuels and the global energy crisis have led to an urgent need for renewable and clean energy sources that have little impact on the environment.One of the most important and largest alternative energy sources is marine waves,which have enormous energy that can be utilized using the correct and appropriate methods.The present work aims to study the possibility of investing wave energy by extracting the wave power at the northern coasts of the Arabian Gulf using numerical models for zero crossing and spectral analysis methods(SWAN model).Numerical models were used to analyze metrological data to estimate the wave power,estimated at 0.2664 kW/m by the zero-crossing method,and 0.386 kW/m by the spectral analysis method at a depth of 19 meters.The weak wave power may be due to the shallowness of the Gulf compared to other seas,in addition to the weather conditions in the study area,which are directly affected by weather phenomena,especially wind speed.The research recommends conducting further studies on wave energy and studying the most advanced methods for extracting it because of its great economic returns for Iraq.展开更多
A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak...A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak value of the 1-breather solution are calculated.Additionally,through the asymptotic analysis of 2-breather solution,we show that two breathers undergo an elastic collision.By applying the generalized long-wave limit method,the fundamental and second-order rogue wave solutions for the complex m Kd V equation are obtained from the 1-breather and 2-breather solutions,respectively.We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex m Kd V equation from the 2-breather solution.Furthermore,the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex m Kd V equation are derived from the 3-breather solution via the generalized long-wave limit method.By controlling the phase parameters of breathers,the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated.展开更多
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
基金Project(24A0006)supported by the Key Project of Scientific Research Fund of Hunan Provincial Department of Education,ChinaProject(2024JJ5430)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(2024JK2045,2023RC3061)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071161 and 52301322)the Jiangsu Provincial Natural Science Foundation(Grant No.BK20220653).
文摘In recent years,the exploitation of offshore wind resources has been attached with greater importance.As a result,semi-submersible floating wind turbines(FWTs)have gradually become a popular research topic,with the structural strength being a research hotspot as it can ensure the safe operation of FWTs.The severe sea conditions of freak waves result in enormous wave heights,extremely fast wave speeds,and concentrated energy.Thus,it is difficult to accurately simulate these effects on the loads of floating wind turbines using the potential flow theory and other theories.In this paper,the structural strength of a floating wind turbine under the action of freak waves is analyzed based on the CFD-FEA coupled method.The effects of the mooring system and the wind load are considered in the time domain,and the CFD method is applied to analyze the wave load of the floating wind turbine under the extreme sea state of freak waves.The strength and motion of the floating wind turbine float structure are analyzed by combining the CFD method and the FEA method,and the analytical results of the mutual transfer of these two methods are taken as the initial quantities for further analysis.The accuracy of the analytical model of the CFD-FEA method is verified by the results of the tank test analysis,and the structural strength analysis under freak wave conditions is carried out for a new type of floating wind turbine.The results of this research provide useful guidance and references for the design and engineering applications of offshore floating wind turbines.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2022020579)the Newton Advanced Fellowships by the Royal Society(Grant No.NAF\R1\180304).
文摘The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.
基金The project supported by Key Laboratory of Space Ocean Remote Sensing and Application,Ministry of Natural Resources under contract No.2023CFO016the National Natural Science Foundation of China under contract No.61931025+1 种基金the Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Universities under contract No.23CX04042A.
文摘Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods.
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
基金supported by the National Natural Science Foundation of China(No.52377026)Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)the Natural Science Foundation of Shandong Province,China(No.ZR2024ME046).
文摘With the booming development of electronic information science and 5G communication technology,electromagnetic radi-ation pollution poses a huge threat and damage to humanity.Developing novel and high-performance electromagnetic wave(EMW)ab-sorbers is an effective method to solve the above issue and has attracted the attention of many researchers.As a typical magnetic material,ferrite plays an important role in the design of high-performance EMW absorbers,and related research focuses on diversified synthesis methods,strong absorption performance,and refined microstructure development.Herein,we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method,sol-gel method,chemical coprecipitation method,and solvent thermal method in the preparation of high-performance EMW absorbers.This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods.It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite.
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).
文摘The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302435 and 12221002)。
文摘Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.
基金support from Program Riset Kolaborasi Indonesia(RKI)2024(Grant No.1841/IT1.B07.1/TA.00/2024).
文摘Wave shoaling,which involves an increase in wave amplitude due to changes in water depth,can damage shore-lines.To mitigate this damage,we propose using porous structures such as mangrove forests.In this study,we use a mathematical model to examine how mangroves,acting as porous breakwater,can reduce wave shoaling amplitude.The shallow water equations are used as the governing equations and are modified to account for the presence of porous media.To measure the wave reduction generated by the porous media,the wave transmis-sion coefficient is estimated using analytical and numerical approaches.The separation of variables method and the staggered finite volume method are utilized for each approach,respectively.The numerical results are then validated against the previously obtained analytical solutions.We then vary the friction and porosity parame-ters-determined by the presence and extent of porous media,to evaluate their effectiveness in reducing wave shoaling.
基金supported by the National Natural Science Foundation of China(No.12372005)the Aeronautical Science Foundation of China(No.ASFC-2024Z070050001)the Natural Science Foundation of Liaoning Province(2024-MSBA-32).
文摘In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,turning motion,and turning motion with different radi by the voltage differential driving method.A prototype with a weight of 38 g and dimensions of 150×80×31 mm^(3) was fabricated.Firstly,the dynamics and kinematics of the piezoelectric robot were analyzed to obtain the trajectory of a point at the end of the piezoelectric robot leg.The motion principle of the piezo-electric robot was analyzed,and then the piezoelectric robot's modal analysis and harmonic response analysis were carried out using finite element analysis software.Finally,an experimental setup was built to verify the effectiveness and high efficiency of the robot's motion,and the effects of frequency,voltage,load,and height of the driving leg on the robot's motion performance were discussed.The performance test results show that the piezoelectric robot has a maximum veloc-ity of 66.79 mm/s at an excitation voltage of 320 V and a load capacity of 55 g.In addition,the H-BPR with unequal drive legs has better climbing performance,and the obtained conclusions are informative for selecting leg heights for piezoelectric robots.
基金supported by the Natural Sciences and Engineering Research Council of Canada-Discovery Grant(individual)Program(No.NSEC-DG#355433-2009)funded by the LabEx CeLyA(Centre Lyonnais d’Acoustique,No.ANR-10-LABX-0060)of Universite?de Lyon。
文摘The present study investigates the wavespace of Highly Contrasted Structures(HCS)and Highly Dissipative Structures(HDS)by wave-based models.The Asymptotic Homogenization Method(AHM),exploits the asymptotic Zig-Zag model and homogenization technique to compute the bending wavenumbers via a 6th-order equation.The General Laminate Model(GLM)employs Mindlin’s displacement field to establish displacement-constraint relationships and resolves a quadratic Eigenvalue Problem(EVP)of the dispersion relation.The Wave Finite Element(WFE)scheme formulates the Nonlinear Eigenvalue Problem(NEP)for waves in varying directions and tracks complex wavenumbers using Weighted Wave Assurance Criteria(WWAC).Two approaches are introduced to estimate the Damping Loss Factor(DLF)of HDS,with the average DLF calculated by the modal density at various angles where non-homogeneity is present.Evaluation of robustness and accuracy is made by comparing the wavenumbers and DLF obtained from AHM and GLM with WFE.WFE is finally extended to a sandwich metastructure with a non-homogeneous core,and the Power Input Method(PIM)with Finite Element Method(FEM)data is employed to assess the average DLF,demonstrating an enhanced DLF compared to layered configurations with the same material portion,indicating increased energy dissipation due to the bending-shear coupling effects.
基金funded by National Science and Technology Council,grant number NSTC 113-2223-E-006-014.
文摘This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform(IFFT).Considering the substantial displacement effects that Floating Offshore Wind Turbine(FOWT)support structures undergo when subjected to wave loads,the time-domain wave method is more suitable,while the frequency-domain method requiring IFFT cannot be used for moving bodies.Nonetheless,the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle.Thus,the paper incorporates various numerical schemes,including parallel computing and extrapolation of wave forces during specific time steps to improve overall efficiency.Despite the effectiveness of these schemes,the computational difficulties associated with the time-domain wave method persist.This study then proposes an innovative approach utilizing different randomnumbers in distinct segments,significantly reducing the computation of second-order wave loads.This random number interpolation ensures a smooth curve transition between two segments,emphasizingminimizing errors near the end of the first segment.Numerical analyses demonstrate substantial decreases in total computer time for FOWT structural analyses while maintaining consistent steel design results.The proposed method is uncomplicated,requiring only a simple subprogram modification in a conventional wave load computer program.
文摘This paper studies the bandgap characteristics of a locally resonant metamaterial beam with time delays.The dispersion relations are addressed based on transfer matrix method.The governing equations of motion of the beam in the frequency domain are given according to spectral element method.The amplitude-frequency responses of the forced beam are determined by solving linear algebraic equations.The obtained results show that the time-delayed feedback control has great relationships with the location,width and number of the bandgaps.It is interesting that the time delay can change the direction of the movement of the bandgap and give rise to the generation of multiple bandgaps.The influences of different combinations of control parameters on the bandgap properties are shown,such as broadening effects.
基金supported by the National Natural Science Foundation of China(52174162)the Fundamental Research Funds for the Central Universities(FRF-TP-20-002A3).
文摘Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst.
基金supported by the National Natural Science Foundation of China(Grant No.11925204).
文摘The Boussinesq equations,pivotal in the analysis of water wave dynamics,effectively model weakly nonlinear and long wave approximations.This study utilizes the complete discriminant system within a polynomial approach to derive exact traveling wave solutions for the coupled Boussinesq equation.The solutions are articulated through soliton,trigonometric,rational,and Jacobi elliptic functions.Notably,the introduction of Jacobi elliptic function solutions for this model marks a pioneering advancement.Contour plots of the solutions obtained by assigning values to various parameters are generated and subsequently analyzed.The methodology proposed in this study offers a systematic means to tackle nonlinear partial differential equations in mathematical physics,thereby enhancing comprehension of the physical attributes and dynamics of water waves.
基金supported by the National Key Research and Development Program of China (Grant No.2023YFC3206501 and 2022YFFO802600)the National Natural Science Foundation of China (Grant No.52369003,42262010 and 42374166)+6 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No.2023LHMS04011 and2022MS04009)the Application Technology Research and Development Project of Jungar Banner (Grant No.2023YY-18 and 2023YY-19)the First-class Academic Subjects Special Research Project of the Education Department of Inner Mongolia Autonomous Region (Grant No.YLXKZX-NND-010)the Inner Mongolia Autonomous Region Science and Technology Leading Talent Team (Grant No.2022LJRC0007)the Inner Mongolia Agricultural University Basic Research Project(BR22-12-04)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No.NMGIRT2313)the Basic Scientific Research Project of Institutions of Higher(Grant No.JY20230090)。
文摘In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface,such grids are unsuitable to realize the free boundary condition.They also easily generate false scattered waves at the corners of the grids owing to the approximation of the stepped grids.These issues affect the simulation accuracy.This study introduces an orthogonal body-fitted grid generation technique in computational fl uid dynamics for generating grids in transversely isotropic(TI)media under an irregular surface.The fi rst-order velocity-stress equation in curvilinear coordinates is calculated using the optimized nonstaggered grids finite difference method.The point oscillation generated by the nonstaggered grids difference is eliminated by selective filtering.The orthogonal body-fitted grids can accurately describe the irregular surface.Further,the orthogonality of the grids allows the implementation of free boundary conditions without complicated coordinate transformation and interpolation operations.Numerical examples show that the numerical solutions obtained by this method agree well with the analytical solutions.By comparing the simulation results of the proposed method with those of the regular grid difference method,the proposed method can eff ectively eliminate the false scattered waves caused by the stepped grids under the condition of the same grid spacing.Thus,the accuracy of the numerical simulation is improved.In addition,the simulation results of the three-layer TI media model on an irregular surface show that the proposed method is also suitable for complex models.
文摘The worsening of global warming due to burning fossil fuels and the global energy crisis have led to an urgent need for renewable and clean energy sources that have little impact on the environment.One of the most important and largest alternative energy sources is marine waves,which have enormous energy that can be utilized using the correct and appropriate methods.The present work aims to study the possibility of investing wave energy by extracting the wave power at the northern coasts of the Arabian Gulf using numerical models for zero crossing and spectral analysis methods(SWAN model).Numerical models were used to analyze metrological data to estimate the wave power,estimated at 0.2664 kW/m by the zero-crossing method,and 0.386 kW/m by the spectral analysis method at a depth of 19 meters.The weak wave power may be due to the shallowness of the Gulf compared to other seas,in addition to the weather conditions in the study area,which are directly affected by weather phenomena,especially wind speed.The research recommends conducting further studies on wave energy and studying the most advanced methods for extracting it because of its great economic returns for Iraq.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12061051 and 12461048)。
文摘A compact Grammian form for N-breather solution to the complex m Kd V equation is derived using the bilinear Kadomtsev–Petviashvili hierarchy reduction method.The propagation trajectory,period,maximum points,and peak value of the 1-breather solution are calculated.Additionally,through the asymptotic analysis of 2-breather solution,we show that two breathers undergo an elastic collision.By applying the generalized long-wave limit method,the fundamental and second-order rogue wave solutions for the complex m Kd V equation are obtained from the 1-breather and 2-breather solutions,respectively.We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex m Kd V equation from the 2-breather solution.Furthermore,the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex m Kd V equation are derived from the 3-breather solution via the generalized long-wave limit method.By controlling the phase parameters of breathers,the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated.