期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Minimization of the Flowrate of Fresh Water and Corresponding Regenerated Water in Water-using System with Regeneration Reuse 被引量:1
1
作者 徐冬梅 胡仰栋 +1 位作者 华贲 王修林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第3期257-263,共7页
A sequential three-step programming method is proposed for determining the minimum flowrate of fresh water and corresponding regenerated water in water-using system of single contaminant with regeneration reuse. In st... A sequential three-step programming method is proposed for determining the minimum flowrate of fresh water and corresponding regenerated water in water-using system of single contaminant with regeneration reuse. In step 1, a programming with the objective of min fws is used to determine the minimum flowrate of fresh water, in which the mathematical representation is a mixed integer nonlinear programming (MINLP1). Then under the same constraints with step 1, a programming with the objective of min freg in step 2 and a programming with the objective of min Cr in step 3 are subsequently used to determine the minimum flowrate of regenerated water and the minimum inlet concentration to regeneration process corresponding to the minimum flowrate of fresh water based on step 1. The method is easy to apply because we only need to change the objective function but keep the constraints constant to go along the following steps after step 1. In addition, the relationship between the fresh water flowrate required, fws and inlet concentration to regeneration process, Cr, is investigated. It is found that there exist three relationships between fws and Cr, which indicate three possibilities for C\>: below the pinch, above the pinch or at the pinch. Therefore, a new conclusion is drawn, which differs from that 'regeneration of water at pinch minimizes fresh water flowrate' derived in literature and indicates that in some cases, regeneration at other point also minimizes fresh water flowrate. 展开更多
关键词 wastewater minimization water-using system REUSE REGENERATION mass exchange network
在线阅读 下载PDF
A heuristic design method for batch water-using networks of multiple contaminants with regeneration unit
2
作者 Aihong Li Changzhan Liu Zhiyong Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第5期1103-1112,共10页
This work develops a heuristic method for the design of batch water-using networks of multiple contaminants with regeneration unit based on the concepts of concentration potential. A water-using network involving rege... This work develops a heuristic method for the design of batch water-using networks of multiple contaminants with regeneration unit based on the concepts of concentration potential. A water-using network involving regeneration unit can be formed by adding the regenerated stream(s) into the network involving reuse only. In the design procedure of the network operated in a single batch mode, time is take n as the primary factor a nd con centration potentials as the secondary one. For the networks operated in a repeated mode, the design procedure is similar to that for continuous processes, besides designing the storage tanks with the rules proposed. Continuous regeneration unit is selected in this work. With the proposed method, the network structure corresponding to the minimum freshwater consumption can be obtained. It is shown that the method proposed in this article is simple, effective and has clear engineering meaning. 展开更多
关键词 water-using network BATCH process REGENERATION OPTIMAL design WASTEWATER MINIMIZATION
在线阅读 下载PDF
Variation of Water-Use Efficiency of Leymus chinensis and Cleistogenes squarrosa in Different Plant Communities in Xilin River Basin, Nei Mongol 被引量:6
3
作者 陈世苹 白永飞 韩兴国 《Acta Botanica Sinica》 CSCD 2002年第12期1484-1490,共7页
Water is usually considered to be a key limiting factor for the growth and reproduction of steppe plants in the Xilin River Basin, Nei Mongol. Foliar delta C-13 values, an indicator of long-term intercellular carbon d... Water is usually considered to be a key limiting factor for the growth and reproduction of steppe plants in the Xilin River Basin, Nei Mongol. Foliar delta C-13 values, an indicator of long-term intercellular carbon dioxide concentration and thus of water-use efficiency (WUE) in plants, were measured on Leymus chinensis (Trin.) Tzvel. and Cleistogenes squarrosa (Trin.) Keng. in six communities of different habitats in die Xilin River Basin. The foliar delta C-13 values of both species tended to increase with decreasing soil water content (SWC) and a significant negative correlation was found between foliar delta C-13 Values and SWC in different soil layers, indicating that the two species could change WUE according to water availability. We also found relatively constant leaf water contents (LWC) of the two species in different habitats. Our results implied that the two steppe species might have adapted to different soil water regimes either through adjusting stomatal conductance to get a proper WUE, or through enhancing the osmosis-regulating ability to keep a relatively stable LWC. Our findings could partially explain why the two plant species have a wide distribution range and become dominant in the Xilin River Basin. 展开更多
关键词 Xilin River Basin Leymus chinensis Cleistogenes squarrosa water-use efficiency delta C-13 value
在线阅读 下载PDF
Effects of Phosphorus Application in Different Soil Layers on Root Growth, Yield, and Water-Use Efficiency of Winter Wheat Grown Under Semi-Arid Conditions 被引量:5
4
作者 KANG Li-yun YUE Shan-chao LI Shi-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第9期2028-2039,共12页
Deep phosphorus application can be a usefull measure to improve crops' performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments... Deep phosphorus application can be a usefull measure to improve crops' performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments. Thus, the aims of this study were to evaluate the effects of phosphorus(P) application at different soil layers on root growth, grain yield, and water-use efficiency(WUE) of winter wheat grown on the semi-arid Loess Plateau of China and to explore the relationship between root distribution and grain yield. The experiment consisted of four P treatments in a randomized complete block design with three replicates and two cultivars: one drought-sensitive(Xiaoyan 22, XY22) and one drought-tolerant(Changhan 58, CH58). The four P treatments were no P(control, CK), surface P(SP), deep P(DP), and deep-band P application(DBP). CH58 produced larger and deeper root systems, and had higher grain yields and WUE, under the deep P treatments(DP and DBP) than under SP, clearly showing that deep P placement had beneficial effects on the drought-tolerant cultivar. In contrast, the grain yield and root growth of XY22 did not differ between DP or DBP and SP treatments. Further, root dry weight(RW) and root length(RL) in deep soil layer(30-100 cm) were closely positively correlated with grain yield and WUE of CH58(but not XY22), highlighting the connections between a well-developed subsoil root system and both high grain yield and WUE for the drought-tolerant cultivar. WUE correlated strongly with grain yield for both cultivars(r=0.94, P〈0.001). In conclusion, deep application of P fertilizer is a practical and feasible means of increasing grain yield and WUE of rainfed winter wheat in semi-arid regions, by promoting deep root development of drought-tolerant cultivars. 展开更多
关键词 water stress phosphorus application soil layers grain yield root growth water-use efficiency
在线阅读 下载PDF
Determination of a Reasonable Percentage for Ecological Water-Use in the Haihe River Basin, China 被引量:6
5
作者 XIA Jun FENG Hua-Li +1 位作者 ZHAN Che-Sheng NIU Cun-Wen 《Pedosphere》 SCIE CAS CSCD 2006年第1期33-42,共10页
An investigation was conducted to study problems of determining a reasonable percentage for ecological water-use in the Haihe River Basin of China. Three key aspects for the ecological water requirement (EWR) were a... An investigation was conducted to study problems of determining a reasonable percentage for ecological water-use in the Haihe River Basin of China. Three key aspects for the ecological water requirement (EWR) were analyzed, involving i) the EWR for river system, ii) the EWR for wetlands and lakes, and iii) the EWR for discharge into the sea to maintain the estuary ecological balance of the Haihe River. The Montana method and related water level-flow relationships, and the statistic approach based on hydrological records were applied to estimate different components of EWR. The results showed that the total ecological water demand in the region, was about 3.47-14.56 billion m^3. Considering flow regime change and uncertainty, the ecological water demand could be estimated by the hydrological frequency approach. Preliminary analysis showed that for different annual runoff under the frequencies of 20%, 50%, 75% and 95%, the ecological water demand approached 12%-50%, 18%-74%, 24%-103%, 35%-148% and 16%-66%, respectively. By further analysis to balance ecological water-use and socioeconomic water-use, the rational percentage of ecological water-use was estimated as 35%-74%, that provides useful information to judge whether the allocation of water resources is reasonable, and was proved to be satisfactory by comparing with the practical condition. 展开更多
关键词 ecological water requirement ecological water-use Haihe River Basin
在线阅读 下载PDF
Modeling grassland net primary productivity and water-use efficiency along an elevational gradient of the Northern Tianshan Mountains 被引量:5
6
作者 QiFei HAN GePing LUO +2 位作者 ChaoFan LI Hui YE YaoLiang CHEN 《Journal of Arid Land》 SCIE CSCD 2013年第3期354-365,共12页
Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-c... Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-climate interactions is vital for mountainous ecosystems. Water-use efficiency (WUE) provides a useful index for understanding the metabolism of terrestrial ecosystems as well as for evaluating the degradation of grasslands. This paper explored net primary productivity (NPP) and WUE in grasslands along an elevational gradient ranging from 400 to 3,400 m asl in the northern Tianshan Mountains-southern Junggar Basin (TMJB), Xinjiang of China, using the Biome-BGC model. The results showed that: 1 ) the NPP increased by 0.05 g C/(m2-a) with every increase of 1-m elevation, reached the maximum at the mid-high elevation (1,600 m asl), and then decreased by 0.06 g C/(m2.a) per 1-m increase in elevation; 2) the grassland NPP was positively correlated with temperature in alpine meadow (AM, 2,700-3,500 m asl), mid-mountain forest meadow (MMFM, 1,650-2,700 m asl) and low-mountain dry grassland (LMDG, 650-1,650 m asl), while positive correlations were found between NPP and annual precipitation in plain desert grassland (PDG, lower than 650 m asl); 3) an increase (from 0.08 to 1.09 g C/(m2.a)) in mean NPP for the grassland in TMJB under a real climate change scenario was observed from 1959 to 2009; and 4) remarkable differences in WUE were found among different elevations, in general, WUE increased with decreasing elevation, because water availability is lower at lower elevations; however, at elevations lower than 540 m asl, we did observe a decreasing trend of WUE with decreasing elevation, which may be due to the sharp changes in canopy cover over this gradient. Our research suggests that the NPP simulated by Biome-BGC is consistent with field data, and the modeling provides an opportunity to further evaluate interactions between environmental factors and ecosystem productivity. 展开更多
关键词 elevational gradient net primary production water-use efficiency CLIMATE
在线阅读 下载PDF
Long-term changes in the tree radial growth and intrinsic water-use efficiency of Chuanxi spruce(Picea likiangensis var.balfouriana) in southwestern China 被引量:2
7
作者 WANG Yang ZHANG Yong +1 位作者 FANG Ouya SHAO Xuemei 《Journal of Geographical Sciences》 SCIE CSCD 2018年第6期833-844,共12页
Elevated CO_(2) level in the atmosphere is expected and intrinsic water-use efficiency(iWUE).Although current found the tree growth decline in water-limited area,it is st to improve the tree growth rates results infer... Elevated CO_(2) level in the atmosphere is expected and intrinsic water-use efficiency(iWUE).Although current found the tree growth decline in water-limited area,it is st to improve the tree growth rates results inferring from tree rings unclear whether spruce trees in humid southwestern China benefit from the increasing 002.In this study,tree-ring width data were used to investigate the tree radial growth rate of Chuanxi spruce(Picea likiangensis var.balfouriana).Moreover,combining with the tree-ring carbon isotope date,we analyzed the physiological responses of Chuanxi spruce to rising CO_(2) concentrations in the atmosphere(C_(a))associated with climatic change in southwestern China.From 1851 to 2009,iWUE of Chuanxi spruce rose by approximately 30.4%,and the ratio of atmospheric CO_(2) to leaf in-tercellular CO_(2) concentration(C_(j)/C_(a))showed no significant trend in the study area.The result suggested that Chuanxi spruce used an active response strategy when C_(a) was significantly increased,iWUE showed a significant increasing trend in parallel with tree radial growth,indicating that the increasing iWUE resulted in an increase in radial growth.These results suggest that spruce forests in southwestern China have not shown declining trends under increasing Ca and climate change scenarios,in contrast to trees growing in water-limited areas.Therefore,spruce forests benefit from the increasing CO_(2) in the atmosphere in the humid areas of southwestern China. 展开更多
关键词 tree ring basel area increment carbon isotope intrinsic water-use efficiency C0_(2)fertilization
原文传递
Water-use efficiency in response to simulated increasing precipitation in a temperate desert ecosystem of Xinjiang, China 被引量:7
8
作者 HUANG Gang LI Yan +2 位作者 MU Xiaohan ZHAO Hongmei CAO Yanfeng 《Journal of Arid Land》 SCIE CSCD 2017年第6期823-836,共14页
Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored... Water-use efficiency(WUE) is a key plant functional trait that plays a central role in the global cycles of water and carbon. Although increasing precipitation may cause vegetation changes, few studies have explored the linkage between alteration in vegetation and WUE. Here, we analyzed the responses of leaf WUE, ecosystem carbon and water exchanges, ecosystem WUE, and plant community composition changes under normal conditions and also under extra 15% or 30% increases in annual precipitation in a temperate desert ecosystem of Xinjiang, China. We found that leaf WUE and ecosystem WUE showed inconsistent responses to increasing precipitation. Leaf WUE consistently decreased as precipitation increased. By contrast, the responses of the ecosystem WUE to increasing precipitation are different in different precipitation regimes: increasing by 33.9% in the wet year(i.e., the normal precipitation years)and decreasing by 4.1% in the dry year when the precipitation was about 30% less than that in the wet year.We systematically assessed the herbaceous community dynamics, community composition, and vegetation coverage to explain the responses of ecosystem WUE, and found that the between-year discrepancy in ecosystem WUE was consistent with the extent to which plant biomass was stimulated by the increase in precipitation. Although there was no change in the relative significance of ephemerals in the plant community, its greater overall plant biomass drove an increased ecosystem WUE under the conditions of increasing precipitation in 2011. However, the slight increase in plant biomass exerted no significant effect on ecosystem WUE in 2012. Our findings suggest that an alteration in the dominant species in this plant community can induce a shift in the carbon-and water-based economics of desert ecosystems. 展开更多
关键词 desert ecosystem ecosystem water-use efficiency gross carbon exchange increasing precipitation leaf water-use efficiency net carbon exchange Gurbantunggut Desert
在线阅读 下载PDF
Plastic mulch increases dryland wheat yield and water-use productivity,while straw mulch increases soil water storage 被引量:1
9
作者 Hubing Zhao Guanfei Liu +5 位作者 Yingxia Dou Huimin Yang Tao Wang Zhaohui Wang Sukhdev Malhi Adnan Anwar Khan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3174-3185,共12页
Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa... Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage. 展开更多
关键词 plastic mulch soil water storage straw mulch water-use productivity winter wheat
在线阅读 下载PDF
Evaluating agricultural water-use efficiency based on water footprint of crop values: a case study in Xinjiang of China 被引量:1
10
作者 HAI Yang LONG Aihua +3 位作者 ZHANG Pei DENG Xiaoya LI Junfeng DENG Mingjiang 《Journal of Arid Land》 SCIE CSCD 2020年第4期580-593,共14页
Efficient agricultural water use is crucial for food safety and water conservation on a global scale. To quantitatively investigate the agricultural water-use efficiency in regions exhibiting the complex agricultural ... Efficient agricultural water use is crucial for food safety and water conservation on a global scale. To quantitatively investigate the agricultural water-use efficiency in regions exhibiting the complex agricultural structure, this study developed an indicator named water footprint of crop values(WFV) that is based on the water footprint of crop production. Defined as the water volume used to produce a unit price of crop(m^3/CNY), the new indicator makes it feasible to directly compare the water footprint of different crops from an economic perspective, so as to comprehensively evaluate the water-use efficiency under the complex planting structure. On the basis of WFV, the study further proposed an indicator of structural water-use coefficient(SWUC), which is represented by the ratio of water-use efficiency for a given planting structure to the water efficiency for a reference crop and can quantitatively describe the impact of planting structure on agricultural water efficiency. Then, a case study was implemented in Xinjiang Uygur Autonomous Region of China. The temporal and spatial variations of WFV were assessed for the planting industries in 14 prefectures and cities of Xinjiang between 1991 and 2015. In addition, contribution rate analysis of WFV for different prefectures and cities was conducted to evaluate the variations of WFV caused by different influencing factors: agricultural input, climatic factors, and planting structure. Results from these analyses indicated first that the average WFV of planting industries in Xinjiang significantly decreased from 0.293 m^3/CNY in 1991 to 0.153 m^3/CNY in 2015, corresponding to an average annual change rate of –3.532%. WFV in 13 prefectures and cities(with the exception of Karamay) has declined significantly during the period of 1991–2015, indicating that agricultural water-use efficient has effectively improved. Second, the average SWUC in Xinjiang decreased from 1.17 to 1.08 m^3/CNY in the 1990 s, and then declined to 1.00 m^3/CNY in 2011–2015. The value of SWUC was highly consistent with the relative value of WFV in most prefectures and cities, showing that planting structure is one of the primary factors affecting regional agricultural water-use efficiency. Third, the contribution rate of WFV variations from human factors including agricultural input and planting structure was much more significant than that from climatic factors. However, the distribution of agricultural input and the adjustment of planting structure significantly differed among prefectures and cities, suggesting regional imbalances of agricultural development. This study indicated the feasibility and effectiveness of controlling agricultural water use through increasing technical input and rational selection of crops in the face of impending climate change. Specifically, we concluded that, the rational application of chemical fertilizers, the development of the fruit industry, and the strict restriction of the cotton industry should be implemented to improve the agricultural water-use efficiency in Xinjiang. 展开更多
关键词 agricultural input climatic factors contribution rate planting structure structural water-use coefficient water footprint of crop values
在线阅读 下载PDF
Spatiotemporal Dynamics of Green Total-factor Water-use Efficiency and Its Influencing Factors in China
11
作者 MA Dalai ZHANG Fengtai +3 位作者 GAO Lei YANG Guangming YANG Qing AN Youzhi 《Chinese Geographical Science》 SCIE CSCD 2021年第5期795-814,共20页
In this study,we developed an evaluation index system for green total-factor water-use efficiency(GTFWUE)which reflected both economic and green efficiencies of water resource utilization.Then we measured the GTFWUE o... In this study,we developed an evaluation index system for green total-factor water-use efficiency(GTFWUE)which reflected both economic and green efficiencies of water resource utilization.Then we measured the GTFWUE of 30 provinces/municipalities/autonomous regions(hereafter provinces)in China(not including Tibet,Hong Kong,Macao,Taiwan as no data)from 2000 to 2018 using a minimum distance to the strong frontier model that contained an undesirable output.We further analyzed the regional differences and spatial correlations of GTFWUE using these values based on Global and Local Moran’s I statistics,and empirically determined the factors affecting GTFWUE using a spatial econometric model.The evaluation results revealed that the GTFWUE differed substantially between the regions.The provinces with high and low GTFWUE values were located in the coastal and inland areas of China,respectively.The eastern region had a significantly higher GTFWUE than the central and western regions.The GTFWUEs for all three regions(eastern,central,and western regions)decreased slowly from 2000 to 2011(except 2005),remained stable from 2012 to 2016,and rapidly increased in 2017 before decreasing again in 2018.We found significant spatial correlations between the provincial GTFWUEs.The GTFWUE for most provinces belonged to the high-high or low-low cluster region,revealing a significant spatial clustering effect of provincial GTFWUEs.We also found that China’s GTFWUE was highly promoted by economic growth,population size,opening-up level,and urbanization level,and was evidently hindered by water endowment,technological progress,and government influence.However,the water-use structure had little impact on GTFWUE.This study fully demonstrated that the water use mode would be improved,and water resources needed to be used more efficiently and green in China.Moreover,based on the findings of this study,several policy recommendations were proposed from the aspects of cross-regional cooperation,economy,society,and institution. 展开更多
关键词 green total-factor water-use efficiency(GTFWUE) spatiotemporal dynamics water scarcity influencing factors spatial econometric model
在线阅读 下载PDF
Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple
12
作者 HU Ling-yu YUE Hong +4 位作者 ZHANG Jing-yun LI Yang-tian-su GONG Xiao-qing ZHOU Kun MA Feng-wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第7期1968-1981,共14页
Myo-inositol and its derivatives play important roles in the tolerance of higher plants to abiotic stresses,and myo-inositol-1-phosphate synthase(MIPS)is the rate-limiting enzyme in myo-inositol biosynthesis.In this s... Myo-inositol and its derivatives play important roles in the tolerance of higher plants to abiotic stresses,and myo-inositol-1-phosphate synthase(MIPS)is the rate-limiting enzyme in myo-inositol biosynthesis.In this study,we found that increased myo-inositol biosynthesis enhanced drought tolerance in MdMIPS1-overexpressing apple lines under shortterm progressive drought stress.The effect of myo-inositol appeared to be mediated by the increased accumulation of osmoprotectants such as glucose,sucrose,and proline,and by the increased activities of antioxidant enzymes that eliminate reactive oxygen species.Moreover,enhanced water-use efficiency(WUE)was observed in MdMIPS1-overexpressing apple lines under long-term moderate water deficit conditions that mimicked the water availability in the soil of the Loess Plateau.Enhanced WUE may have been associated with the synergistic regulation of osmotic balance and stomatal aperture mediated by increased myo-inositol biosynthesis.Taken together,our findings shed light on the positive effects of MdMIPS1-mediated myo-inositol biosynthesis on drought tolerance and WUE in apple. 展开更多
关键词 apple MdMIPS1 myo-inositol water deficit drought tolerance water-use efficiency
在线阅读 下载PDF
The Discuss of the Formula of Flow Loss and Water Using Coefficient on Seepage Proofed Channel
13
作者 MENBao-hui ZHOUQing-guo 《Journal of Northeast Agricultural University(English Edition)》 CAS 2001年第1期43-48,共6页
On the basis of the analysis about present water resource situation in China,the disadvantage of the for- mula of flow loss and water using coefficient on anti-seep channel which have been applying in channel de- sign... On the basis of the analysis about present water resource situation in China,the disadvantage of the for- mula of flow loss and water using coefficient on anti-seep channel which have been applying in channel de- sign and water saving irrigation administration will be indicated in the paper. The characteristics of that the loss of conveying water is changeable with the now changing have been take into account in the new formula. The formula is validated by the example of middle permeable channel (A=1.90,m=0.40). The calculate re- sult is more precision. Also some formula has been given,they can be referred to the worker of the irrigation administration. 展开更多
关键词 water resource water saving irrigation channel flow loss water-using coefficient
在线阅读 下载PDF
Effects of soil drought stress on photosynthetic gas exchange traits and chlorophyll fluorescence in Forsythia suspensa 被引量:10
14
作者 Ying Lang Ming Wang +1 位作者 Jiangbao Xia Qiankun Zhao 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第1期45-53,共9页
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil ... To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa. 展开更多
关键词 Chlorophyll fluorescence Gas exchange Photosynthetic rate Soil water deficit Stomatal mechanism water-use efficiency
在线阅读 下载PDF
Long-Term Conservation Agriculture and Intensified Cropping Systems:Effects on Growth,Yield,Water,and Energy-use Efficiency of Maize in Northwestern India 被引量:5
15
作者 Chiter M.PARIHAR Malu R.YADAV +10 位作者 Shankar L.JAT Aditya K.SINGH Bhupender KUMAR Vijay POONIYA Sanatan PRADHAN Rakesh K.VERMA Mangi L.JAT Raj K.JAT Muli D.PARIHAR Hari S.NAYAK Yashpal S.SAHARAWAT 《Pedosphere》 SCIE CAS CSCD 2018年第6期952-963,共12页
Conservation agriculture(CA)-based best-bet crop management practices may increase crop and water productivity, while conserving and sustaining natural resources. We evaluated the performance of rainy season maize dur... Conservation agriculture(CA)-based best-bet crop management practices may increase crop and water productivity, while conserving and sustaining natural resources. We evaluated the performance of rainy season maize during 2014 under an ongoing long-term trial(established in 2008) with three tillage practices, i.e., permanent bed(PB), zero tillage(ZT), and conventional tillage(CT) as main plots, and four intensified maize-based cropping systems, i.e., maize-wheat-mungbean, maize-chickpea-Sesbania(MCS), maizemustard-mungbean, and maize-maize-Sesbania) as subplot treatments. In the seventh rainy season of the experiment, maize growth parameters, yield attributes, yield, and water-and energy-use efficiency were highest at fixed plots under ZT. Maize growth parameters were significantly(P < 0.05) superior under ZT and PB compared with CT. Maize yield attributes, including cobs per m^2(7.8), cob length(0.183 m), grain rows per cob(13.8), and grains per row(35.6), were significantly higher under ZT than CT; however, no significant effect of cropping systems was found on maize growth and yield attributes. Zero tillage exhibited the highest maize productivity(4 589 kg ha^(-1)). However, among the cropping systems, MCS exhibited the highest maize productivity(4 582 kg ha^(-1)). In maize, water use was reduced by 80.2–120.9 mm ha-1under ZT and PB compared with CT, which ultimately enhanced the economic water-use efficiency by 42.0% and 36.6%, respectively. The ZT and PB showed a 3.5%–31.8% increase in soil organic carbon(SOC) at different soil depths(0–0.45 m), and a 32.3%–39.9% increase in energy productivity compared with CT. Overall, our results showed that CA-based ZT and PB practices coupled with diversified maize-based cropping systems effectively enhanced maize yield and SOC,as well as water-and energy-use efficiency, in northwestern India. 展开更多
关键词 conventional TILLAGE economic water-usE efficiency PERMANENT bed RAINY SEASON soil organic carbon zero TILLAGE
原文传递
A preliminary study of water use strategy of desert plants in Dunhuang,China 被引量:7
16
作者 YongQin CUI JianYing MA +2 位作者 Wei SUN JiaHuan SUN ZhengHu DUAN 《Journal of Arid Land》 SCIE CSCD 2015年第1期73-81,共9页
Water is a restrictive factor for plant growth and ecosystem stability in arid and semiarid areas. The dynamics of water availability in soils and water use by plants are consequently critical to ecosystem functions, ... Water is a restrictive factor for plant growth and ecosystem stability in arid and semiarid areas. The dynamics of water availability in soils and water use by plants are consequently critical to ecosystem functions, e.g. maintaining a high resistance to the changing climate. Plant water use strategies, including water-use efficiency (WUE) and the main water source that a plant species utilizes, play an important role in the evaluation of stability and sustainability of a plantation. The water use strategies of desert plants (Tamarix chinensis, Alhagi sparsifolia, Elaeagnus angustifolia, Sophora alopecuroides, Bassia dasyphylla and Nitraria sphaerocarpa) in three different habitats (saline land, sandy land and Gobi) in Dunhuang (located in the typical arid area of northwestern China) were studied. The stable isotope of oxygen was used to determine the main water source and leaf carbon isotope discrimination was used to estimate the long-term WUE of plant species in the summer of 2010. The results suggest that: 1) the studied desert plants took up soil water below the depth of 80 cm; 2) T. chinensis in the three habitats used deeper soil water and T. chinensis in the Gobi site had higher WUE than those in the saline land and the sandy land. The results indicated that desert plants in Dunhuang depended on stable water source and maintained high WUE to survive in water limited environments. 展开更多
关键词 desert plant stable isotope water source water-use efficiency Dunhuang
在线阅读 下载PDF
Patterns and drivers of seasonal water sources for artificial sand-fixing plants in the northeastern Mu Us sandy land,Northwest China 被引量:3
17
作者 Yanwu PEI Laiming HUANG +2 位作者 Ming'an SHAO Jiao WANG Yinglong ZHANG 《Pedosphere》 SCIE CAS CSCD 2024年第1期63-77,共15页
Understanding plant water-use patterns is important for improving water-use efficiency and for sustainable vegetation restoration in arid and semi-arid regions. However, seasonal variations in water sources and their ... Understanding plant water-use patterns is important for improving water-use efficiency and for sustainable vegetation restoration in arid and semi-arid regions. However, seasonal variations in water sources and their control by different sand-fixing plants in water-limited desert ecosystems remain poorly understood. In this study, stable isotopic ratios of hydrogen(δ^(2)H) and oxygen(δ^(18)O) in precipitation, soil water, groundwater, and xylem water were determined to document seasonal changes in water uptake by three representative plant species(Pinus sylvestris var. mongolica Litv., Amygdalus pedunculata Pall., and Salix psammophila) in the northeastern Mu Us sandy land, Northwest China. Based on the depth distribution and temporal variation of measured gravimetric soil water content(SWC), the soil water profile of the three species stands was divided into active(0.01 g g^(-1)< SWC < 0.08 g g^(-1), 20%< coefficient of variation(CV) < 45%), stable(0.02 g g^(-1)< SWC < 0.05 g g^(-1), CV < 20%), and moist(0.08 g g^(-1)< SWC < 0.20 g g^(-1), CV >45%) layers. Annually, P. sylvestris, A. pedunculata, and S. psammophila obtained most water from deep(59.2%±9.7%, moist layer and groundwater),intermediate(57.4%±9.8%, stable and moist layers), and shallow(54.4%±10.5%, active and stable layers) sources, respectively. Seasonally, the three plant species absorbed more than 60% of their total water uptake from the moist layer and groundwater in the early(June) dry season;then, they switched to the active and stable layers in the rainy season(July–September) for water resources(50.1%–62.5%). In the late(October–November) dry season, P. sylvestris(54.5%–66.2%) and A. pedunculata(52.9%–63.6%) mainly used water from stable and moist layers, whereas S. psammophila(52.6%–70.7%) still extracted water predominantly from active and stable layers. Variations in the soil water profile induced by seasonal fluctuations in precipitation and groundwater levels and discrepancies in plant phenology, root distribution, and water demand are the main factors affecting the seasonal water-use patterns of artificial sand-fixing plants. Our study addresses the issue of plant water uptake with knowledge of proportional source-water use and reveals important implications for future vegetation restoration and water management in the Mu Us sandy land and similar desert regions around the world. 展开更多
关键词 desert ecosystem MixSIAR model plant water uptake soil moisture stable isotopes vegetation restoration water-use efficiency
原文传递
Stable isotopes reveal varying water sources of Caragana microphylla in a desert-oasis ecotone near the Badain Jaran Desert 被引量:4
18
作者 Hai Zhou WenZhi Zhao +1 位作者 ZhiBin He Heng Ren 《Research in Cold and Arid Regions》 CSCD 2018年第6期458-467,共10页
Understanding the variation in a plant’s water sources is critical to understanding hydrological processes in water-limited environments. Here, we measured the stable-isotope ratios(δ18 O) of xylem water of Caragana... Understanding the variation in a plant’s water sources is critical to understanding hydrological processes in water-limited environments. Here, we measured the stable-isotope ratios(δ18 O) of xylem water of Caragana microphylla, precipitation,soil water from different depths, and groundwater to quantitatively analyze the proportion of water sources for the shrub.We found that the water sources of C. microphylla differed with the plant’s ages and the seasons. The main water source for young shrubs was upper-soil water, and it showed significant changes with seasonal precipitation inputs. In summer,the proportion contributed by shallow water was significantly increased with increased precipitation inputs. Then, the contribution from shallow-soil water decreased with the decline in precipitation input in spring and autumn. However, the adult shrubs resorted to deep-soil layers and groundwater as the main water sources during the whole growing season and showed much less seasonal variation. We conclude that the main water source of the young shrubs was upper-soil water and was controlled by precipitation inputs. However, once the shrub gradually grew up and the roots reached sufficient depth, the main water sources change from the upper-soil layer recharged by precipitation to deep-soil water and groundwater, which were relatively stable and abundant in the desert ecosystem. These results also suggest that desert shrubs may be able to switch their main water sources to deep and reliable water sources as their age increases, and this adjustment to water availability carries significant importance for their acclimation to the desert habitat. 展开更多
关键词 water-use pattern oxygen stable isotope water sources Caragana microphylla
在线阅读 下载PDF
Effects of Alternative Partial Root-zone Irrigation and Nitrogen Fertilizer on Plukenetia volubilis Seedlings
19
作者 耿艳菁 蔡传涛 蔡志全 《Agricultural Science & Technology》 CAS 2016年第4期890-895,共6页
This study was aimed to investigate the effects of alternative partial rootzone irrigation and nitrogen fertilizer on the potted seedlings of Plukenetia volubilis.A total of 7 treatments were designed with three facto... This study was aimed to investigate the effects of alternative partial rootzone irrigation and nitrogen fertilizer on the potted seedlings of Plukenetia volubilis.A total of 7 treatments were designed with three factors, i.e., irrigation amount, irrigation mode and nitrogen fertilizer. The growth, photosynthesis and water use efficiency were analyzed. The results showed that compared with those under full irrigation, the biomass and water consumption under alternative partial root-zone irrigation were reduced by 5% and 75%, respectively, and the water use efficiency was increased by 60%. Under severe drought conditions, the root cap ratio in the nitrogen fertilizer treatment group was increased by 30%; the leaf area index, photosynthetic rate and biomass under alternative partial root-zone irrigation were reduced by 38%, 9% and 18%, respectively. It indicates that under severe drought conditions, alternative partial root-zone irrigation is not suitable to be matched with application of nitrogen fertilizer. In short, under moderate drought conditions, alternative partial root-zone irrigation could reduce transpiration and improve water use efficiency, and it is an effective water-saving irrigation technology for the plantation of P.volubilis plants. 展开更多
关键词 Plukenetia volubilis L. Alternative partial root-zone irrigation Nitrogen fertilizer GROWTH water-use efficiency
在线阅读 下载PDF
Changes in foliar carbon isotope composition and seasonal stomatal conductance reveal adaptive traits in Mediterranean coppices affected by drought 被引量:2
20
作者 Giovanni Di Matteo Luigi Perini +5 位作者 Paolo Atzori Paolo De Angelis Tiziano Mei Giada Bertini Gianfranco Fabbio Giuseppe Scarascia Mugnozza 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第4期839-845,共7页
We estimated water-use efficiency and potential photosyn- thetic assimilation of Holm oak (Quercus ilex L.) on slopes of NW and SW aspects in a replicated field test examining the effects of intensifying drought in ... We estimated water-use efficiency and potential photosyn- thetic assimilation of Holm oak (Quercus ilex L.) on slopes of NW and SW aspects in a replicated field test examining the effects of intensifying drought in two Mediterranean coppice forests. We used standard tech- niques for quantifying gas exchange and carbon isotopes in leaves and analyzed total chlorophyll, carotenoids and nitrogen in leaves collected from Mediterranean forests managed under the coppice system. We pos- tulated that responses to drought of coppiced trees would lead to differ- ential responses in physiological traits and that these traits could be used by foresters to adapt to predicted warming and drying in the Mediterra- nean area. We observed physiological responses of the eoppiced trees that suggested acclimation in photosynthetic potential and water-use effi- ciency: (1) a significant reduction in stomatal conductance (p〈0.01) wasrecorded as the drought increased at the SW site; (2) foliar 813C increased as drought increased at the SW site (p〈0.01); (3) variations in levels of carotenoids and foliar nitrogen, and differences in foliar morphology were recorded, and were tentatively attributed to variation in photosyn- thetic assimilation between sites. These findings increase knowledge of the capacity for acclimation of managed forests in the Mediterranean region of Europe. 展开更多
关键词 Mediterranean forest ecosystems forest acclimation stableisotopes leaf gas exchanges water-use efficiency foliar traits adaptivesilviculture.
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部