The Casimir pressure plays an important role in the adhesion stability of nanofilms at submicro scales.In this work,the Casimir pressure of peptide films deposited on a layered substrate is investigated.Three types of...The Casimir pressure plays an important role in the adhesion stability of nanofilms at submicro scales.In this work,the Casimir pressure of peptide films deposited on a layered substrate is investigated.Three types of semi-infinite substrates,i.e.,silica,silicon and gold,are considered.The buffer layer between the peptide film and substrate consists of silicon or silica.The switching sign of the Casimir pressure can be controlled in a region ranging from about 130 nm to 1000 nm,depending on the thickness of the buffer layer and the substrate.The results suggest that the critical thickness of peptide films for Casimir equilibrium increases(or decreases)by increasing the thickness of the silicon(or silica)buffer film.The influences of wetting and electrolyte screening on the Casimir pressure are also investigated.Our finding provides a theoretical guide for the adhesion stability of peptide films in organic electronics.展开更多
The squeezing deformation of surrounding rock is an important factor restricting the safe construction and long-term operation of tunnels when a tunnel passes through soft strata with high ground stress.Under such sof...The squeezing deformation of surrounding rock is an important factor restricting the safe construction and long-term operation of tunnels when a tunnel passes through soft strata with high ground stress.Under such soft rock geological conditions,the large deformation of the surrounding rock can easily lead to the failure of supporting structures,including shotcrete cracks,spalling,and steel arch distortion.To improve the lining support performance during the large deformation of squeezed surrounding rock,this work selects aluminum foam with densities of 0.25 g/cm3,0.42 g/cm3 and 0.61 g/cm3 as the buffer layer material and carries out uniaxial confined compression tests.Through the evaluation and analysis of energy absorption and the comparison of the yield pressure of aluminum foam with those of other cushioning materials and yield pressure support systems,the strength,deformation and energy absorption of aluminum foam with a density of 0.25 g/cm3 meet the yield pressure performance requirements.The numerical model of the buffer layer yielding support system is then established via the finite element analysis software ABAQUS,and the influence of the buffer layer setting on the lining support is analyzed.Compared with the conventional support scheme,the addition of an aluminum foam buffer layer can reduce the stress and deformation of the primary support and secondary lining.The maximum and minimum principal stresses of the primary support are reduced by 13%and 15%,respectively.The maximum and minimum principal stresses of the secondary lining are reduced by 15%and 12%,respectively,and the displacement deformation of the secondary lining position is reduced by 15%.In summary,the application of aluminum foam buffer layer can reduce the stress and deformation of the primary support and secondary lining,improve the stress safety of the support and reduce the deformation of the support.展开更多
The efficiency of Cu2ZnSnS4(CZTS)solar cells is limited due to interfacial band misalignment and severe non-radiative recombination.ZnSnO(ZTO)is a promising Cd-free buffer layer,offering a potential for favorable band...The efficiency of Cu2ZnSnS4(CZTS)solar cells is limited due to interfacial band misalignment and severe non-radiative recombination.ZnSnO(ZTO)is a promising Cd-free buffer layer,offering a potential for favorable band alignment with CZTS absorber.Here,we demonstrate that optimizing the temperature-dependent deposition during reactive magnetron sputtering significantly promotes elemental interdiffusion.For the proposed CZTS/ZTO interface,a favorable“spike-like”band alignment is achieved,effectively enhancing the carrier transport efficiency and reducing the interfacial defect density.Furthermore,Zn diffusion mitigates CuZn(that is,copper atoms sit at sites normally occupied by zinc atoms)antisite defects,reducing the non-radiative recombination and improving the absorber quality.Finally,the champion device achieved the highest power conversion efficiency(PCE)of 10.90%by sputtering ZTO as buffer layer in CZTS solar cell so far,with a high open circuit voltage(VOC)of 740 mV and a fill factor(FF)of 61.79%.This strategy highlights the potential of sputtered ZTO as a scalable and eco-friendly buffer layer for Cd-free CZTS solar cells.展开更多
Optimizing the orientation of β-Ga_(2)O_(3) has emerged as an effective strategy to design high-performance β-Ga_(2)O_(3) device,but the orientation growth mechanism and approach have not been revealed yet.Herein,by...Optimizing the orientation of β-Ga_(2)O_(3) has emerged as an effective strategy to design high-performance β-Ga_(2)O_(3) device,but the orientation growth mechanism and approach have not been revealed yet.Herein,by employing AlN buffer layer,the highly preferred orientation of β-Ga_(2)O_(3)(100)film rather than(-201)film is realized on 4H-SiC substrate at low sputtering power and temperature.Because β-Ga_(2)O_(3)(100)film exhibits a slower growth speed than(-201)film,the former possesses the higher dangling bond density and the lower nucleation energy,and a large conversion barrier exists between these two ori-entations.Moreover,the AlN buffer layer can suppress the surface oxidation of the 4H-SiC substrate and eliminate the strain of β-Ga_(2)O_(3)(100)film,which further reduces the nucleation energy and en-larges the conversion barrier.Meanwhile,the AlN buffer layer can increase the oxygen vacancy formation energy and decrease the oxygen vacancy concentration of β-Ga_(2)O_(3)(100)film.Consequently,the solar-blind photodetector based on the oriented film exhibits the outstanding detectivity of 1.22×10^(12) Jones and photo-to-dark current ratio of 1.11×10^(5),which are the highest among the reported β-Ga_(2)O_(3) solar-blind photodetector on the SiC substrate.Our results offer in-depth insights into the preferred orientation growth mechanism,and provide an effective way to design high-quality β-Ga_(2)O_(3)(100)orientation film and high-performance solar-blind photodetector.展开更多
Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/...Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.展开更多
Aqueous Zn-based batteries(AZBs)are hindered by issues associated with the Zn electrodeposition process(ZEDP)on electrode surfaces,including passivation,dendrite formation,and hydrogen evolution.One of the important r...Aqueous Zn-based batteries(AZBs)are hindered by issues associated with the Zn electrodeposition process(ZEDP)on electrode surfaces,including passivation,dendrite formation,and hydrogen evolution.One of the important reasons is the drastic fluctuation in the concentration of Zn^(2+)ions on the electrode surface during the charging and discharging process.In this work,an electrolyte with Zn^(2+)ion buffer layer(EZIBL)is proposed to regulate the ZEDP.First,numerical simulations and corresponding experiments are conducted to assess the impact of different thicknesses of the Zn^(2+)ion buffer layer(ZIBL)on the variation in Zn^(2+)ion concentration,from which the optimal thickness of the ZIBL is determined.Then,the regulation role of EZIBL in the cycling process is demonstrated by a Zn-Cu half cell.Further,combined with the potential profile of the symmetric cell and the experimental phenomena,the regulation role of EZIBL in ZEDP is systematically explained at the mechanistic level through the analysis of key parameters.Finally,a full battery composed of Zn-LiMn2O4 is assembled to evaluate the practical applicability of the EZIBL in real battery cycles,which shows great enhancement in capacity retention and coulombic efficiency.This work proposes the design of the EZIBL used to regulate the ZEDP and provides a simple,low-cost regulation method for the development of high-performance AZBs.展开更多
This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentr...This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously.展开更多
Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device pe...Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance,as in a wide bandgap Zn_(1-x)Mg_(x)O(ZMO)to replace the CdS buffer in Cu(In_(1-x),Ga_(x))Se_(2)(CIGSe)thin-film solar cell structure.ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content,which can be helpful in attaining a suitable conduction band offset.Hence,compared to the fixed and limited bandgap of a CdS buffer,a ZMO buffer may provide advantages in V_(oc) and J_(sc) based on its controllable and wide bandgap,even with a relatively wider bandgap CIGSe thin-film solar cell.In addition,to solve problems with the defect sites at the ZMO/CIGSe junction interface,a few-nanometer ZnS layer is employed for heterojunction interface passivation,forming a ZMO/ZnS buffer structure by atomic layer deposition(ALD).Finally,a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap(1.25 eV)and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%,which exhibited a higher performance than the CdS counterpart.展开更多
The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes fr...The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.展开更多
CuI thin films with nano-scale grains of about 35nm were deposited via spraying method with using acetonitrile as solvent. The influence of iodine doping concentration in acetonitrile solution on the structure, topogr...CuI thin films with nano-scale grains of about 35nm were deposited via spraying method with using acetonitrile as solvent. The influence of iodine doping concentration in acetonitrile solution on the structure, topographic and optical properties of CuI thin films was investigated. X-ray diffraction results showed that CuI iodine-doped films doped CuI:I2 were in γ-phase of zinc blende structure with (111) preferential plane. Scanning electron microscopy revealed that the microstructure of CuI films depended on the relative amount of doping iodine in the solution. When the iodine doping amount in acetonitrile solution was 0.025 g, the film was uniform and compact, the optical transmittance was 75.4% in the part of visible region and the energy band gap was close to 2.96 eV.展开更多
The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene)...The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.展开更多
An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic sola...An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection.展开更多
This paper reported a novel coating approach to deposit a (HA) film on Ti6Al4V alloy with Al2O3 buffer layer for thin, crack free and nano-structured hydroxyapatite biomedical implants. The Al2O3 buffer layer was de...This paper reported a novel coating approach to deposit a (HA) film on Ti6Al4V alloy with Al2O3 buffer layer for thin, crack free and nano-structured hydroxyapatite biomedical implants. The Al2O3 buffer layer was deposited by plasma spraying while the HA top layer was applied by dip coating technique. The X-ray diffraction (XRD) and Raman reflections of alumina buffer layer showed α- to γ-Al2O3 phase transformation; and the fractographic analysis of the sample revealed the formation of columnar grains in well melted splats. The bonding strength between Al2O3 coating and Ti6Al4V substrate was estimated to be about 40 MPa. The presence of dip coated HA layer was confirmed using XRD, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis. The SEM images exhibited that HA top layer enveloped homogenously the troughs and crests of the underneath rough (Ra = 2.91 μm) Al2O3 surface. It is believed that the novel coating approach adopted might render the implant suitable for rapid cement-less fixation as well as biocompatible for longer periods.展开更多
Cd1_xZnxS (x = 0, 0.1, 0.2, 0.3, 1.0) thin films have been grown successfully on soda-lime glass substrates by chemical bath deposition technique as a very promising buffer layer material for optoelectronic device a...Cd1_xZnxS (x = 0, 0.1, 0.2, 0.3, 1.0) thin films have been grown successfully on soda-lime glass substrates by chemical bath deposition technique as a very promising buffer layer material for optoelectronic device applications. The composition, structural properties, surface morphol- ogy, and optical properties of Cd~_xZnxS thin films were characterized by energy dispersive analysis of X-ray tech- nique (EDAX), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectrophotometer tech- niques, respectively. The annealed films were observed to possess the deficient sulfur composition. The results of XRD show that the Cdl_xZnxS (x = 0. l) thin film annealed at 450 ~C forms hexagonal (wurtzite) structure with lattice parameters a = 0.408814 nm, c : 0.666059 nm, and its average grain size is 24.9902 nm. The diffraction peaks become strong with the increasing annealing temperatures. The surface of Cdl_~ZnxS (x = 0.1) thin film annealed at 450 ~C is uninterrupted and homogenous as compared to other temperatures. From optical properties, it is observed that the presence of small amount of Zn results in marked changes in the optical band gap of CdS. The band gaps of the Cdl_xZnxS thin films vary from 2.42 to 3.51 eV as composition varies from x = 0.0 to 1.0.展开更多
In this work, water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5%W substrates with an inclusion of polymeric polyvinyl pyrrolidone were devel...In this work, water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5%W substrates with an inclusion of polymeric polyvinyl pyrrolidone were developed. The effect of varying percentage of the polymer addition on the preparation of the deposited films with maximum crack-free thickness was investigated. This novel water-based chemical solution deposition method involving polymers in two different chelate-chemistry compositions revealed the possibility to grow single, crack-free layers with thicknesses ranging from 140 to 280 nm, with good crystallinity and epitaxial growth. The effect of increasing polymer concentrations on the morphology and the structure of the films was studied. The appropriate buffer layer action of the films in preventing Ni diffusion was studied by X-ray photoelectron spectroscopy.展开更多
Use of a buttering deposit on ferritic steel in dissimilar metal weld(DMW) joint is a common practice in nuclear plants to connect pressure vessel components(ferritic steel) to pipelines(austenitic stainless stee...Use of a buttering deposit on ferritic steel in dissimilar metal weld(DMW) joint is a common practice in nuclear plants to connect pressure vessel components(ferritic steel) to pipelines(austenitic stainless steel).Carbon migration and metallurgical changes near fusion interface(ferritic steel–austenitic stainless steel) lead to a steeper gradient in material properties,and minimizing this gradient is the major challenge in the manufacturing of DMW joints.Inconel 82 is often deposited on ferritic steel material as buttering to reducing the gradient of physical and attaining material compatibility.Inconel 82/182 fillers are used to minimize the carbon migration,but the results are not truly adequate.In this paper,Ni–Fe alloy(chromium-free) has been used as the intermediate buffer layer in the weld buttering deposit to address the issue of carbon migration and subsequent metallurgical deterioration.The weld pads with and without buffer layers of Ni–Fe alloy have been investigated and compared in detail for metallurgical properties and carbon diffusivities.Ni–Fe buffer layer can significantly control the carbon migration which resists the metallurgical deterioration.It showed the better results in postweld heat treatment and thermally aged conditions.The buttering deposit with Ni–Fe buffer layer could be the better choice for DMW joints requirements.展开更多
NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. I...NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. It is found that the texture of NiO could be affected directly by the orientation and surface of substrate. X-ray diffraction (XRD) 2-2θ scan, φ-scan, and pole figure were employed to characterize the in-plane alignment and cube texture. X-ray φ-scan shows that NiO film is formed on Ni tape with high cube texture and a typical value at the full width at half maximum (FWHM) is ≤ 7.5°. Scanning electron microscopy was used to study the surface morphology of NiO films. No crack is found and the films appear dense. Such technique is simple and of low cost with perfect reproducibility, promising for developing long tapes.展开更多
A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs). In this paper, Ag-based top-emitting OLEDs are investigated. Ag has the highest reflectivity for vis...A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs). In this paper, Ag-based top-emitting OLEDs are investigated. Ag has the highest reflectivity for visible light among all metals, yet its hole-injection properties are not ideal for anodes of top-emitting OLED. The performance of the devices is significantly improved using the molybdenum oxide as anode buffer layer at the surface of Ag. By introducing the molybdenum oxide, the hole injection from Ag anodes into top-emitting OLED is largely enhanced with rather high reflectivity retained.展开更多
In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT)...In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11804288)the Natural Science Foundation of Henan(Grant No.232300420120)。
文摘The Casimir pressure plays an important role in the adhesion stability of nanofilms at submicro scales.In this work,the Casimir pressure of peptide films deposited on a layered substrate is investigated.Three types of semi-infinite substrates,i.e.,silica,silicon and gold,are considered.The buffer layer between the peptide film and substrate consists of silicon or silica.The switching sign of the Casimir pressure can be controlled in a region ranging from about 130 nm to 1000 nm,depending on the thickness of the buffer layer and the substrate.The results suggest that the critical thickness of peptide films for Casimir equilibrium increases(or decreases)by increasing the thickness of the silicon(or silica)buffer film.The influences of wetting and electrolyte screening on the Casimir pressure are also investigated.Our finding provides a theoretical guide for the adhesion stability of peptide films in organic electronics.
基金the support of the National Natural Science Foundation of China(Grant No.42207199)Scientific Research Project of Education of Zhejiang Province(No.Y202351343)+1 种基金Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)Zhejiang Province International Science and Technology Cooperation Base Open Fund Project(IBGDP-2023-01)。
文摘The squeezing deformation of surrounding rock is an important factor restricting the safe construction and long-term operation of tunnels when a tunnel passes through soft strata with high ground stress.Under such soft rock geological conditions,the large deformation of the surrounding rock can easily lead to the failure of supporting structures,including shotcrete cracks,spalling,and steel arch distortion.To improve the lining support performance during the large deformation of squeezed surrounding rock,this work selects aluminum foam with densities of 0.25 g/cm3,0.42 g/cm3 and 0.61 g/cm3 as the buffer layer material and carries out uniaxial confined compression tests.Through the evaluation and analysis of energy absorption and the comparison of the yield pressure of aluminum foam with those of other cushioning materials and yield pressure support systems,the strength,deformation and energy absorption of aluminum foam with a density of 0.25 g/cm3 meet the yield pressure performance requirements.The numerical model of the buffer layer yielding support system is then established via the finite element analysis software ABAQUS,and the influence of the buffer layer setting on the lining support is analyzed.Compared with the conventional support scheme,the addition of an aluminum foam buffer layer can reduce the stress and deformation of the primary support and secondary lining.The maximum and minimum principal stresses of the primary support are reduced by 13%and 15%,respectively.The maximum and minimum principal stresses of the secondary lining are reduced by 15%and 12%,respectively,and the displacement deformation of the secondary lining position is reduced by 15%.In summary,the application of aluminum foam buffer layer can reduce the stress and deformation of the primary support and secondary lining,improve the stress safety of the support and reduce the deformation of the support.
基金supported by the National Natural Science Foundation of China(No.52472225)Guangdong Basic and Applied Basic Research Foundation(No.2025A1515012041)+1 种基金Shenzhen University 2035 Program for Excellent Research(No.2024B003)China and the Special Fund for the Cultivation of Independent Innovation Achievements of Postgraduate Students at Shenzhen University.
文摘The efficiency of Cu2ZnSnS4(CZTS)solar cells is limited due to interfacial band misalignment and severe non-radiative recombination.ZnSnO(ZTO)is a promising Cd-free buffer layer,offering a potential for favorable band alignment with CZTS absorber.Here,we demonstrate that optimizing the temperature-dependent deposition during reactive magnetron sputtering significantly promotes elemental interdiffusion.For the proposed CZTS/ZTO interface,a favorable“spike-like”band alignment is achieved,effectively enhancing the carrier transport efficiency and reducing the interfacial defect density.Furthermore,Zn diffusion mitigates CuZn(that is,copper atoms sit at sites normally occupied by zinc atoms)antisite defects,reducing the non-radiative recombination and improving the absorber quality.Finally,the champion device achieved the highest power conversion efficiency(PCE)of 10.90%by sputtering ZTO as buffer layer in CZTS solar cell so far,with a high open circuit voltage(VOC)of 740 mV and a fill factor(FF)of 61.79%.This strategy highlights the potential of sputtered ZTO as a scalable and eco-friendly buffer layer for Cd-free CZTS solar cells.
基金supported by the National Key Research and Development Program of China(No.2021YFA0715600)the National Natural Science Foundation of China(Nos.62274125,52192611)+2 种基金the Guangdong Basic and Applied Basic Research Fund(No.2023A1515030084)the Key Research and Development Program of Shaanxi Province(Grant No.2024GX-YBXM-410)the fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202220).
文摘Optimizing the orientation of β-Ga_(2)O_(3) has emerged as an effective strategy to design high-performance β-Ga_(2)O_(3) device,but the orientation growth mechanism and approach have not been revealed yet.Herein,by employing AlN buffer layer,the highly preferred orientation of β-Ga_(2)O_(3)(100)film rather than(-201)film is realized on 4H-SiC substrate at low sputtering power and temperature.Because β-Ga_(2)O_(3)(100)film exhibits a slower growth speed than(-201)film,the former possesses the higher dangling bond density and the lower nucleation energy,and a large conversion barrier exists between these two ori-entations.Moreover,the AlN buffer layer can suppress the surface oxidation of the 4H-SiC substrate and eliminate the strain of β-Ga_(2)O_(3)(100)film,which further reduces the nucleation energy and en-larges the conversion barrier.Meanwhile,the AlN buffer layer can increase the oxygen vacancy formation energy and decrease the oxygen vacancy concentration of β-Ga_(2)O_(3)(100)film.Consequently,the solar-blind photodetector based on the oriented film exhibits the outstanding detectivity of 1.22×10^(12) Jones and photo-to-dark current ratio of 1.11×10^(5),which are the highest among the reported β-Ga_(2)O_(3) solar-blind photodetector on the SiC substrate.Our results offer in-depth insights into the preferred orientation growth mechanism,and provide an effective way to design high-quality β-Ga_(2)O_(3)(100)orientation film and high-performance solar-blind photodetector.
基金Project supported by the National Natural Science Foundation of China (Grant No.12274108)the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LY23A040008 and LY23A040008)the Basic Scientific Research Project of Wenzhou,China (Grant No.G20220025)。
文摘Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.
基金funding support from National Innovative Talents Program(GG2090007001)USTC Startup Program(KY2090000044).
文摘Aqueous Zn-based batteries(AZBs)are hindered by issues associated with the Zn electrodeposition process(ZEDP)on electrode surfaces,including passivation,dendrite formation,and hydrogen evolution.One of the important reasons is the drastic fluctuation in the concentration of Zn^(2+)ions on the electrode surface during the charging and discharging process.In this work,an electrolyte with Zn^(2+)ion buffer layer(EZIBL)is proposed to regulate the ZEDP.First,numerical simulations and corresponding experiments are conducted to assess the impact of different thicknesses of the Zn^(2+)ion buffer layer(ZIBL)on the variation in Zn^(2+)ion concentration,from which the optimal thickness of the ZIBL is determined.Then,the regulation role of EZIBL in the cycling process is demonstrated by a Zn-Cu half cell.Further,combined with the potential profile of the symmetric cell and the experimental phenomena,the regulation role of EZIBL in ZEDP is systematically explained at the mechanistic level through the analysis of key parameters.Finally,a full battery composed of Zn-LiMn2O4 is assembled to evaluate the practical applicability of the EZIBL in real battery cycles,which shows great enhancement in capacity retention and coulombic efficiency.This work proposes the design of the EZIBL used to regulate the ZEDP and provides a simple,low-cost regulation method for the development of high-performance AZBs.
文摘This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously.
基金conducted under the framework of the research and development program of the Korea Institute of Energy Research(C4-2412 and C4-2413)supported by the National Research Foundation of Korea(grant number 2022M3J1A1063019)funded by the Ministry of Science and ICT.
文摘Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance,as in a wide bandgap Zn_(1-x)Mg_(x)O(ZMO)to replace the CdS buffer in Cu(In_(1-x),Ga_(x))Se_(2)(CIGSe)thin-film solar cell structure.ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content,which can be helpful in attaining a suitable conduction band offset.Hence,compared to the fixed and limited bandgap of a CdS buffer,a ZMO buffer may provide advantages in V_(oc) and J_(sc) based on its controllable and wide bandgap,even with a relatively wider bandgap CIGSe thin-film solar cell.In addition,to solve problems with the defect sites at the ZMO/CIGSe junction interface,a few-nanometer ZnS layer is employed for heterojunction interface passivation,forming a ZMO/ZnS buffer structure by atomic layer deposition(ALD).Finally,a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap(1.25 eV)and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%,which exhibited a higher performance than the CdS counterpart.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60736005 and No.60425101-1), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.60721001), the Provincial Program (No.9140A02060609DZ0208), the Program for New Century Excellent Talents in University (No.NCET- 06-0812), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No.GGRYJJ08P 05), and the Young Excellence Project of Sichuan (No.09ZQ026-074).
文摘The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.
基金Project (2091003) supported by Beijing Natural Science Foundation, China
文摘CuI thin films with nano-scale grains of about 35nm were deposited via spraying method with using acetonitrile as solvent. The influence of iodine doping concentration in acetonitrile solution on the structure, topographic and optical properties of CuI thin films was investigated. X-ray diffraction results showed that CuI iodine-doped films doped CuI:I2 were in γ-phase of zinc blende structure with (111) preferential plane. Scanning electron microscopy revealed that the microstructure of CuI films depended on the relative amount of doping iodine in the solution. When the iodine doping amount in acetonitrile solution was 0.025 g, the film was uniform and compact, the optical transmittance was 75.4% in the part of visible region and the energy band gap was close to 2.96 eV.
基金Project supported by the National Natural Science Foundation of China(Grant No.61204014)the“Chenguang”Project(13CG42)+1 种基金supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,Chinathe Shanghai University Young Teacher Training Program of Shanghai Municipality,China
文摘The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.
文摘An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection.
文摘This paper reported a novel coating approach to deposit a (HA) film on Ti6Al4V alloy with Al2O3 buffer layer for thin, crack free and nano-structured hydroxyapatite biomedical implants. The Al2O3 buffer layer was deposited by plasma spraying while the HA top layer was applied by dip coating technique. The X-ray diffraction (XRD) and Raman reflections of alumina buffer layer showed α- to γ-Al2O3 phase transformation; and the fractographic analysis of the sample revealed the formation of columnar grains in well melted splats. The bonding strength between Al2O3 coating and Ti6Al4V substrate was estimated to be about 40 MPa. The presence of dip coated HA layer was confirmed using XRD, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis. The SEM images exhibited that HA top layer enveloped homogenously the troughs and crests of the underneath rough (Ra = 2.91 μm) Al2O3 surface. It is believed that the novel coating approach adopted might render the implant suitable for rapid cement-less fixation as well as biocompatible for longer periods.
基金financially supported by Key Natural Science Foundation of Education Department of Inner Mongolia Autonomous Region of China (No. NJZZ11013) Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2012MS0117)
文摘Cd1_xZnxS (x = 0, 0.1, 0.2, 0.3, 1.0) thin films have been grown successfully on soda-lime glass substrates by chemical bath deposition technique as a very promising buffer layer material for optoelectronic device applications. The composition, structural properties, surface morphol- ogy, and optical properties of Cd~_xZnxS thin films were characterized by energy dispersive analysis of X-ray tech- nique (EDAX), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectrophotometer tech- niques, respectively. The annealed films were observed to possess the deficient sulfur composition. The results of XRD show that the Cdl_xZnxS (x = 0. l) thin film annealed at 450 ~C forms hexagonal (wurtzite) structure with lattice parameters a = 0.408814 nm, c : 0.666059 nm, and its average grain size is 24.9902 nm. The diffraction peaks become strong with the increasing annealing temperatures. The surface of Cdl_~ZnxS (x = 0.1) thin film annealed at 450 ~C is uninterrupted and homogenous as compared to other temperatures. From optical properties, it is observed that the presence of small amount of Zn results in marked changes in the optical band gap of CdS. The band gaps of the Cdl_xZnxS thin films vary from 2.42 to 3.51 eV as composition varies from x = 0.0 to 1.0.
基金funding under the project grants P2/00/03 (CHEMAT)IAP/VI-17(INANOMAT) and FP7-NMP-2007- SMALL-1 Grant No.205854(EFECTS)
文摘In this work, water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5%W substrates with an inclusion of polymeric polyvinyl pyrrolidone were developed. The effect of varying percentage of the polymer addition on the preparation of the deposited films with maximum crack-free thickness was investigated. This novel water-based chemical solution deposition method involving polymers in two different chelate-chemistry compositions revealed the possibility to grow single, crack-free layers with thicknesses ranging from 140 to 280 nm, with good crystallinity and epitaxial growth. The effect of increasing polymer concentrations on the morphology and the structure of the films was studied. The appropriate buffer layer action of the films in preventing Ni diffusion was studied by X-ray photoelectron spectroscopy.
基金the support given by Board of Research in Nuclear Sciences,Department of Atomic Energy(India)for present work(No.2008/36/107-BRNS/4038A)
文摘Use of a buttering deposit on ferritic steel in dissimilar metal weld(DMW) joint is a common practice in nuclear plants to connect pressure vessel components(ferritic steel) to pipelines(austenitic stainless steel).Carbon migration and metallurgical changes near fusion interface(ferritic steel–austenitic stainless steel) lead to a steeper gradient in material properties,and minimizing this gradient is the major challenge in the manufacturing of DMW joints.Inconel 82 is often deposited on ferritic steel material as buttering to reducing the gradient of physical and attaining material compatibility.Inconel 82/182 fillers are used to minimize the carbon migration,but the results are not truly adequate.In this paper,Ni–Fe alloy(chromium-free) has been used as the intermediate buffer layer in the weld buttering deposit to address the issue of carbon migration and subsequent metallurgical deterioration.The weld pads with and without buffer layers of Ni–Fe alloy have been investigated and compared in detail for metallurgical properties and carbon diffusivities.Ni–Fe buffer layer can significantly control the carbon migration which resists the metallurgical deterioration.It showed the better results in postweld heat treatment and thermally aged conditions.The buttering deposit with Ni–Fe buffer layer could be the better choice for DMW joints requirements.
基金Project supported by National 863 Programof Ministry of Science and Technology of China (2002AA306211 ,2004AA306130)
文摘NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. It is found that the texture of NiO could be affected directly by the orientation and surface of substrate. X-ray diffraction (XRD) 2-2θ scan, φ-scan, and pole figure were employed to characterize the in-plane alignment and cube texture. X-ray φ-scan shows that NiO film is formed on Ni tape with high cube texture and a typical value at the full width at half maximum (FWHM) is ≤ 7.5°. Scanning electron microscopy was used to study the surface morphology of NiO films. No crack is found and the films appear dense. Such technique is simple and of low cost with perfect reproducibility, promising for developing long tapes.
基金supported by the National Natural Science Foundation of China (No.60425101)the Young Excellence Project of University of Electronic Science and Technology of China (No.UESTC-060206)the Fundamental Research Funds for the Central Universities of China (Nos.ZYGX2010Z004 and ZYGX2009J054)
文摘A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs). In this paper, Ag-based top-emitting OLEDs are investigated. Ag has the highest reflectivity for visible light among all metals, yet its hole-injection properties are not ideal for anodes of top-emitting OLED. The performance of the devices is significantly improved using the molybdenum oxide as anode buffer layer at the surface of Ag. By introducing the molybdenum oxide, the hole injection from Ag anodes into top-emitting OLED is largely enhanced with rather high reflectivity retained.
基金Project supported by the National Key Science & Technology Special Project,China(Grant No.2008ZX01002-002)the Fundamental Research Funds for the Central Universities,China(Grant No.JY10000904009)the Major Program and State Key Program of the National Natural Science Foundation of China(Grant Nos.60890191 and 60736033)
文摘In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.