雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的...雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。展开更多
重要输电通道风险评估和预测对状态检修和线路运维工作具有指导性意义,而采用传统长短时记忆(long and short-term memory,LSTM)网络对线路风险进行预测时,人为调参困难、预测精度较低,因此,提出了一种基于水波优化-因子分析-长短时记忆...重要输电通道风险评估和预测对状态检修和线路运维工作具有指导性意义,而采用传统长短时记忆(long and short-term memory,LSTM)网络对线路风险进行预测时,人为调参困难、预测精度较低,因此,提出了一种基于水波优化-因子分析-长短时记忆(water wave optimization-factor analysis-long and short-term memory,WWO-FALSTM)的重要输电通道风险准确评估与快速预测方法。首先,引入Levy分布、高斯–柯西变异算子和线性递减波高对WWO进行改进;其次,获取评估区多维致灾因子,并进行FA降维后作为网络输入,考虑孕灾环境敏感性和承灾体易损性计算出风险指数Rc作为网络输出;通过改进的WWO对LSTM进行不断优化,得到最优化LSTM模型;最后,采用最优化LSTM模型对重要输电通道进行风险预测。结果表明,该模型风险评估准确,模型预测较传统方法降低了误差,适用于输电通道风险评估与预测。展开更多
文摘雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。
文摘重要输电通道风险评估和预测对状态检修和线路运维工作具有指导性意义,而采用传统长短时记忆(long and short-term memory,LSTM)网络对线路风险进行预测时,人为调参困难、预测精度较低,因此,提出了一种基于水波优化-因子分析-长短时记忆(water wave optimization-factor analysis-long and short-term memory,WWO-FALSTM)的重要输电通道风险准确评估与快速预测方法。首先,引入Levy分布、高斯–柯西变异算子和线性递减波高对WWO进行改进;其次,获取评估区多维致灾因子,并进行FA降维后作为网络输入,考虑孕灾环境敏感性和承灾体易损性计算出风险指数Rc作为网络输出;通过改进的WWO对LSTM进行不断优化,得到最优化LSTM模型;最后,采用最优化LSTM模型对重要输电通道进行风险预测。结果表明,该模型风险评估准确,模型预测较传统方法降低了误差,适用于输电通道风险评估与预测。