雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的...雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。展开更多
为提高在现代战场中的生存能力,机载多功能雷达呈现出信号样式复杂、参数高度捷变、开关机无规律和辐射时间减少等特点,给基于传统方法的雷达工作模式识别带来了一定的挑战。参考多功能雷达常见工作模式典型特征参数生成的样本数据,基...为提高在现代战场中的生存能力,机载多功能雷达呈现出信号样式复杂、参数高度捷变、开关机无规律和辐射时间减少等特点,给基于传统方法的雷达工作模式识别带来了一定的挑战。参考多功能雷达常见工作模式典型特征参数生成的样本数据,基于水波中心扩散(water wave center diffusion,WWCD)算法优化多个模型参数,采用自适应加权策略提高多个模型集成学习算法性能,开展多功能雷达工作模式识别。实验分别使用遗传算法、粒子群优化算法、差分进化算法和WWCD算法优化单模型参数,使用软投票、硬投票、自适应加权等不同集成学习策略进行工作模式识别。结果表明,所提算法相较于传统算法具有较高的准确率。此外,还研究测试了该算法在小样本条件下识别雷达工作模式的性能,验证了该算法的可行性和较高的识别效率。展开更多
基于水波扩散效应,提出了一种水波中心扩散算法(water wave center diffusion,WWCD)。着眼解决函数极值优化问题,以某个局部最优解为中心点,由近至远、由密至疏产生多组扩散解进行迭代寻优。通过合理设计扩散解的扩散比例、选择比例和...基于水波扩散效应,提出了一种水波中心扩散算法(water wave center diffusion,WWCD)。着眼解决函数极值优化问题,以某个局部最优解为中心点,由近至远、由密至疏产生多组扩散解进行迭代寻优。通过合理设计扩散解的扩散比例、选择比例和跳跃比例等参数,提高算法的全局寻优效率,对比WWCD与6种智能优化算法极值优化问题的仿真结果,验证了前者在全局求解精度和收敛速度方面的优越性。聚焦雷达信号识别问题,WWCD优化支持向量机(support vector machine,SVM)关键参数进行雷达信号识别实验。仿真结果表明,通过本算法优化SVM关键参数进行雷达信号识别,可明显提高识别效率。展开更多
文摘雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。
文摘为提高在现代战场中的生存能力,机载多功能雷达呈现出信号样式复杂、参数高度捷变、开关机无规律和辐射时间减少等特点,给基于传统方法的雷达工作模式识别带来了一定的挑战。参考多功能雷达常见工作模式典型特征参数生成的样本数据,基于水波中心扩散(water wave center diffusion,WWCD)算法优化多个模型参数,采用自适应加权策略提高多个模型集成学习算法性能,开展多功能雷达工作模式识别。实验分别使用遗传算法、粒子群优化算法、差分进化算法和WWCD算法优化单模型参数,使用软投票、硬投票、自适应加权等不同集成学习策略进行工作模式识别。结果表明,所提算法相较于传统算法具有较高的准确率。此外,还研究测试了该算法在小样本条件下识别雷达工作模式的性能,验证了该算法的可行性和较高的识别效率。