The integration of water quality analysis simulation program (WASP) with a geographical information system (GIS) is presented.This integration was undertaken to enhance the data analysis and management ability of the ...The integration of water quality analysis simulation program (WASP) with a geographical information system (GIS) is presented.This integration was undertaken to enhance the data analysis and management ability of the widely used water quality model.Different types of data involved in WASP modeling were converted and integrated into GIS using a database method.The spatial data modeling and analysis capability of GIS were used in the operation of the model.The WASP water quality model was coupled with the environmental fluid dynamics code (EFDC) hydrodynamic model.A case study of the Lower Charles River Basin (Massachusetts,USA) water quality model system was conducted to demonstrate the integration process.The results showed that high efficiency of the data process and powerful function of data analysis could be achieved in the integrated model,which would significantly improve the application of WASP model in water quality management.展开更多
Taking Liyang City of Jiangsu Province as the research object, a water pollution accident diffusion simulation and analysis system, taking WebGIS as the core, was established by taking finite difference method to do t...Taking Liyang City of Jiangsu Province as the research object, a water pollution accident diffusion simulation and analysis system, taking WebGIS as the core, was established by taking finite difference method to do the system dynamics water quality model solution. This paper introduces the construction process of the model, the integration of the model with GIS, the interactive application of the system and users and the visual dynamic expression of water pollution accidents. By combining the statistical analysis of the spatial and environmental database in the system, the scientific simulation of the temporal and spatial relationship of the development of water pollution accidents on the client side is realized and providing precise decision support for early warning and control of water pollution diffusion.展开更多
基金Project supported by the National Basic Research Program (973) (No.2007CB407306)the National Major Projects on Control and Rectification of Water Body Pollution (No.2008ZX07314-004-002),China and the China Scholar Council
文摘The integration of water quality analysis simulation program (WASP) with a geographical information system (GIS) is presented.This integration was undertaken to enhance the data analysis and management ability of the widely used water quality model.Different types of data involved in WASP modeling were converted and integrated into GIS using a database method.The spatial data modeling and analysis capability of GIS were used in the operation of the model.The WASP water quality model was coupled with the environmental fluid dynamics code (EFDC) hydrodynamic model.A case study of the Lower Charles River Basin (Massachusetts,USA) water quality model system was conducted to demonstrate the integration process.The results showed that high efficiency of the data process and powerful function of data analysis could be achieved in the integrated model,which would significantly improve the application of WASP model in water quality management.
文摘Taking Liyang City of Jiangsu Province as the research object, a water pollution accident diffusion simulation and analysis system, taking WebGIS as the core, was established by taking finite difference method to do the system dynamics water quality model solution. This paper introduces the construction process of the model, the integration of the model with GIS, the interactive application of the system and users and the visual dynamic expression of water pollution accidents. By combining the statistical analysis of the spatial and environmental database in the system, the scientific simulation of the temporal and spatial relationship of the development of water pollution accidents on the client side is realized and providing precise decision support for early warning and control of water pollution diffusion.