In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,en...In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,environmental scanning electron microscopy(ESEM)and nuclear magnetic resonance(NMR)analyses were conducted to gain microstructural insights into loess behavior at the laboratory scale.The results indicate that the maximum saturated hydraulic conductivity is observed at the lowest compaction water content,particularly in the early stage of permeability tests.In particular,for loess compacted at water contents below the optimum(as determined by the modified Proctor compaction test),the hydraulic conductivity decreases throughout the permeability tests.Conversely,when the water content exceeds the optimum level,the hydraulic conductivity shows an increasing trend.In terms of compression behavior,when the as-compacted samples are loaded in oedometer conditions,an increase in material compressibility is observed with increasing compaction water content.Again,a different phenomenological behavior was observed when the compaction water content exceeded the optimum,i.e.an abrupt increase in loess compressibility.ESEM tests provide microstructural confirmation of this evidence,as the surface morphology of the compacted loess changes significantly with increasing compaction water content.The microstructural evolution was also quantified in terms of area ratio using image processing software.Finally,NMR was used to quantify the intra-and inter-aggregate water at different compaction water contents,once again highlighting a threshold for the presence or absence of inter-aggregate water similar to the optimum water content.展开更多
Surface albedo,as one of the important properties of the underlying surface,has a significant impact on the surface energy balance in cold regions.However,due to the complexity of the factors affecting surface albedo,...Surface albedo,as one of the important properties of the underlying surface,has a significant impact on the surface energy balance in cold regions.However,due to the complexity of the factors affecting surface albedo,existing calculations still contain inaccuracies.Therefore,this study conducted surface albedo experiments on loess with different water contents and temperatures.By analyzing the surface albedo measurements of samples with varying temperature and water content levels,as well as the soil freezing characteristic curve(SFCC)and soil-water characteristic curve(SWCC)of loess,the study explores the influence of soil temperature and water content on the surface albedo of loess.The results indicate that both the temperature and water content of loess jointly affect surface albedo.During the process of albedo change,there exists a water content threshold that alters the trend of surface albedo.Soil temperature influences surface albedo by affecting the content of pore ice and liquid water within the soil.When the water content of loess is relatively low,the surface albedo decreases as the unfrozen water content decreases.However,this trend changes as the water content of loess increases.Additionally,a decrease in soil temperature lowers the moisture content threshold during the changes in surface albedo.This study provides a reference for exploring and determining the surface energy balance in cold regions under the background of warm and humid climates,as well as for establishing thermal calculation boundaries.展开更多
Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were condu...Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were conducted,with varying pressures from 400 kPa to 800 kPa,to quantitatively evaluate the densification effect in unsaturated soils.The response of surrounding soil during compaction grouting was monitored.The changes in dry density and void ratio induced by compaction grouting were obtained by monitoring volumetric water content to determine compaction efficiency.In addition,a model was developed and validated to predict the effective compaction range.The results show that soil dry density increased rapidly during compaction grouting before being stabilized at a consistent level.As expected,it is positively correlated with grouting pressures(GPs)and negatively correlated with the distance from the injection point.At higher GPs,the difference in densification effect around the injection point after compaction grouting was significant.Interestingly,variations in ultimate dry density and peak earth pressures perpendicular to the injection direction exhibited axisymmetric behavior around the injection point when comparing the dry density and earth pressure results.Furthermore,soil densification resulted in a decrease in suction.However,no significant effect of GP on suction at different soil positions was observed.Moreover,compaction efficiency decreased with increasing distance from the injection point,showing a strong linear relationship.In addition,the model results for the effective compaction range were basically consistent with the extrapolated values from the experimental results.展开更多
Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground wa...Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground water is of great significance. Compression and creep experiments on sandstone with varying water contents were conducted using a deep soft rock five-linked rheological experiment system. The experimental conditions, including water content (0%, 0.8%, 1.6%, 2.4% and 3.3%) and confining pressure (0, 6, 9 and 12 MPa), were determined based on pressure-free water absorption tests and in-situ stress measurements. The experimental results show that the compressive strength, creep failure stress, and dilatancy stress of sandstone decrease exponentially with increasing water content, while they increase exponentially with confining pressure. The ratio of lateral to axial instantaneous strain increases nearly linearly with the increase of stress, and the lateral creep strain characteristics of the sample are more significant than the axial ones. The duration of the attenuation creep stage of sandstone decreases with increasing water content and increases with increasing confining pressure. The lateral strain enters the steady-state creep stage before the axial strain, and the onset time of the accelerated creep stage of lateral strain under the failure stress is earlier than that of axial strain. The long-term strength of sandstone was determined based on the lateral steady-state creep rate curve, showing a negative exponential relationship with water content and a positive exponential relationship with confining pressure. A method for determining the long-term strength of rocks based on the ratio of lateral strain to axial strain (μc) is proposed, which is independent of water content. The research results provide a reliable theoretical basis for the analysis of the long-term stability of roadways under the influence of groundwater and the early prediction of creep failure.展开更多
Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which m...Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding.展开更多
Aerosol hygroscopicity and liquid water content(ALWC)have important influences on the environmental and climate effect of aerosols.In this study,we measured the hygroscopic growth factors(GF)of particles with dry diam...Aerosol hygroscopicity and liquid water content(ALWC)have important influences on the environmental and climate effect of aerosols.In this study,we measured the hygroscopic growth factors(GF)of particles with dry diameters of 40,80,150,and 200 nm during the wintertime in Nanjing.Both the GF-derived hygroscopicity parameter(κ_(gf))and ALWC increased with particle size,but displayed differing diurnal variations,withκ_(gf)peaking around the midday,while ALWC peaking in the early morning.Nitrate,ammonium and oxygenated organic aerosols(OOA)were found as the chemical components mostly strongly correlated with ALWC.A closure study suggests that during midday photo-oxidation and nighttime high ALWC periods,theκof organic aerosols(κ_(org))was underestimated when using previous parameterizations.Accordingly,we re-constructed parameterizations forκ_(org)and the oxidation level of organics for these periods,which indicates a higher hygroscopicity of photochemically formed OOA than the aqueous OOA,yet both being much higher than the generally assumed OOA hygroscopicity.Additionally,in a typical high ALWC episode,concurrently increased ALWC,nitrate,OOA as well as aerosol surface area and mass concentrations were observed under elevated ambient RH.This strongly indicates a coupled effect that the hygroscopic secondary aerosols,in particular nitratewith strong hygroscopicity,led to large increase in ALWC,which in turn synergistically boosted nitrate and OOA formation by heterogeneous/aqueous reactions.Such interaction may represent an important mechanism contributing to enhanced formation of secondary aerosols and rapid growth of fine particulate matter under relatively high RH conditions.展开更多
Soil color changes with water content due to chemical and physical reactions,making it a potential indicator for moisture estimation.By analyzing soil surface images and comparing color variations against laboratory-m...Soil color changes with water content due to chemical and physical reactions,making it a potential indicator for moisture estimation.By analyzing soil surface images and comparing color variations against laboratory-measured water content,a rapid and cost-effective method for moisture determination can be developed.Traditional moisture measurement techniques are time-consuming,so an imaging-based approach would be highly beneficial for quick decision-making.Soil color is also influenced by factors such as particle coarseness,which creates shadows and alters perceived darkness.This research introduces a novel method to isolate true soil color by analyzing the maximum color response in image pixels,minimizing shadow effects.Several equations were derived to correlate color changes with moisture content and were validated against lab measurements to ensure accuracy and simplicity.The most effective equation can be further adapted for satellite imagery by accounting for atmospheric light scattering differences between ground and satellite sensors,enabling large-scale moisture monitoring.The derived equations can be programmed into a software tool,allowing moisture estimation from simple soil surface images.The study involved controlled experiments where soil samples at varying moisture levels were imaged to establish an empirical color-moisture relationship.This method provides a fast,economical,and practical alternative to conventional techniques.However,the approach requires further refinement to account for different soil types globally.Future work should focus on adjusting the model with variables that adapt the color-moisture relationship for diverse soils,ensuring broader applicability.Once optimized,this could significantly improve moisture assessment in agriculture,environmental monitoring,and land management.展开更多
The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and ...The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and resistance to electromagnetic interference.However,current AHFO water content sensors fail to simultaneously achieve high precision,applicability for deep soil,and automated real-time monitoring,thereby limiting their development and application.Therefore,this study introduces a novel actively heated fiber Bragg grating(AH-FBG)cable.Laboratory tests were conducted to assess the heating uniformity of the AH-FBG cable and to establish the temperature characteristic value(T_(t))-soil water content(θ)calibration formula for water content measurement.Subsequently,AH-FBG cables were deployed for in situ soil water content monitoring in a test pit on the Loess Plateau.Through two-year monitoring data verified the accuracy of the AH-FBG cable and elucidated the spatiotemporal distribution of in situ loess water content.Laboratory results demonstrated superior heating uniformity of AHFBG cable,with a T_(t) standard deviation of approximately 0.3℃.In the field,the AH-FBG cable exhibited excellent performance in soil water content measurement,achieving a high accuracy of 0.023 cm^(3)/cm^(3).Further analysis revealed that the θ fluctuation predominantly occurred within a 10 m depth from the soil surface,with an overall upward trend over the two-year monitoring period;the response of shallow θ to precipitation was significant but exhibited increasing hysteresis with depth;frequent precipitation significantly enhanced water infiltration depth.This study provides technical guidance for highprecision,quasi-distributed,automated and real-time water content measurement of deep soil.展开更多
Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties...Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.展开更多
Suitable water content plays a decisive role in the granulation of sintering mixtures.Herein,a method was proposed to predict the suitable water content for effective granulation on the basis of Litster's granulat...Suitable water content plays a decisive role in the granulation of sintering mixtures.Herein,a method was proposed to predict the suitable water content for effective granulation on the basis of Litster's granulation model.The granulation effectiveness of a sintering mixture was predicted by the model,with the allowance error of±10%.The effects of the water absorption properties,particle size composition and content of adhesive particles on the suitable water content were studied.The results showed that the allowable error of prediction was within±0.5%compared to the experimentally determined suitable water content.With an increase in adhesive powder content of mixtures with higher water absorption,the suitable water content increased to achieve similar granulation effectiveness.Moreover,as the amount of concentrates increased,the suitable water content first increased and then remained steady.The influence of the water absorption characteristics of the adhesive particles on the suitable water content was less than that of their particle size composition in the mixture.展开更多
Significant waste resources are generated in the form of water-oil emulsions.These emulsions cannot be effectively destroyed on an industrial scale by traditional methods that rely on the settling of the aqueous phase...Significant waste resources are generated in the form of water-oil emulsions.These emulsions cannot be effectively destroyed on an industrial scale by traditional methods that rely on the settling of the aqueous phase,and therefore,they accumulate in large quantities.Thermomechanical dehydration,based on the evaporation of the water phase,presents a promising process for recycling such waste.However,within the framework of thermomechanical dehydration,the issue of optimizing energy costs for heating raw materials and controlling the water content in the product arises.Standard methods of determining water content under the boiling conditions of highly stable water-hydrocarbon emulsions are characterized by low efficiency,as they require constant sampling and the involvement of additional equipment and personnel.Consequently,this presents a challenge in predicting and creating an automated thermomechanical dehydration process.Therefore,dynamic curves depicting changes in the water content of these emulsions,depending on the temperature of the boiling liquid,have been obtained.It is proposed to determine the rate of temperature increase(dT/dt)of the boiling emulsion for continuous,real-time monitoring of the residual water content and for recording the moment of complete dehydration.Achieving a boiling emulsion temperature of 130-170℃(or higher)and/or the rate of temperature increase from 3.0 to 5.5(or above)indicates the complete dehydration of the emulsion.The proposed method can be implemented in any industrial or laboratory-scale unit for thermomechanical dehydration without significant capital costs.It is based on the use of simple devices consisting of temperature sensors and a computing unit for determining the temperature and rate of heating.展开更多
The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio...The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.展开更多
The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties...The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.展开更多
The unfrozenwater content(UWC)is a crucial parameter that affects the strength and thermal properties of rocks in relation to engineering construction and geological disasters in cold regions.In this study,three diffe...The unfrozenwater content(UWC)is a crucial parameter that affects the strength and thermal properties of rocks in relation to engineering construction and geological disasters in cold regions.In this study,three different methods were employed to test and estimate the UWC of saturated sandstones,including nuclear magnetic resonance(NMR),mercury intrusion porosimetry(MIP),and ultrasonic methods.The NMR method enabled the direct measurement of the UWC of sandstones using the free induction decay(FID).The MIP method was used to analyze the pore structures of sandstones,with the UWC subsequently calculated based on pore ice crystallization.Therefore,the MIP test constituted an indirect measurement method.Furthermore,a correlation was established between the P-wave velocity and the UWC of these sandstones based on the mixture theory,which could be employed to estimate the UWC as an empirical method.All methods demonstrated that the UWC initially exhibited a rapid decrease from 0C to5C and then generally became constant beyond20C.However,these test methods had different characteristics.The NMR method was used to directly and accurately calculate the UWC in the laboratory.However,the cost and complexity of NMR equipment have precluded its use in the field.The UWC can be effectively estimated by the MIP test,but the estimation accuracy is influenced by the ice crystallization process and the pore size distribution.The P-wave velocity has been demonstrated to be a straightforward and practical empirical parameter and was utilized to estimate the UWC based on the mixture theory.This method may be more suitable in the field.All methods confirmed the existence of a hysteresis phenomenon in the freezing-thawing process.The average hysteresis coefficient was approximately 0.538,thus validating the GibbseThomson equation.This study not only presents alternative methodologies for estimating the UWC of saturated sandstones but also contribute to our understanding of the freezing-thawing process of pore water.展开更多
Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isog...Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isogenic lines(NILs)NILL and NILH that differed at the qGWC1 locus.Lower GWC in NILL was primarily attributed to reduced grain water weight(GWW)and smaller fresh grain size,rather than the accumulation of dry matter.The difference in GWC between the NILs became more pronounced approximately 35 d after pollination(DAP),arising from a faster dehydration rate in NILL.Through an integrated analysis of the transcriptome,proteome,and metabolome,coupled with an examination of hormones and their derivatives,we detected a marked decrease in JA,along with an increase in cytokinin,storage forms of IAA(IAA-Glu,IAA-ASP),and IAA precursor IPA in immature NILL kernels.During kernel development,genes associated with sucrose synthases,starch biosynthesis,and zein production in NILL,exhibited an initial up-regulation followed by a gradual down-regulation,compared to those in NILH.This discovery highlights the crucial role of phytohormone homeostasis and genes related to kernel development in balancing GWC and dry matter accumulation in maize kernels.展开更多
In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples a...In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.展开更多
In seasonal frozen soil,freezing and thawing can change the physical and mechanical properties and affect slope stability.There are complex moisture conditions in the main water transfer canal.A study of the hydrother...In seasonal frozen soil,freezing and thawing can change the physical and mechanical properties and affect slope stability.There are complex moisture conditions in the main water transfer canal.A study of the hydrothermal evolution of canals with different initial water contents under the action of freezing and thawing is of great importance for the prevention and control of canal slope slides.Hydrothermal coupling models are the key to revealing the canal's hydrothermal evolution.As some of the modeling parameters in the current hydrothermal coupling model are based on empirical values,particularly those in the van Genuchten equation,which are not necessarily related to soil properties,they are not suitable for analyzing the hydrothermal evolution of canals.This paper determines the soil-water characteristic curve from the cumulative curve of particle gradation in the subsoil,and then determines the hydraulic parameters of the subsoil using the VG model,which then corrects the hydrothermal coupling model.The method of modifying the hydrothermal coupling model is original,which makes the model more realistically reflect drainage soil characteristics.During freezing and thawing of channel slopes with different initial water contents(21%,25%,29%,33%,37%,and 41%),temperature field,water field,and ice content distributions were investigated.Using the V-G model,the optimal parameters for canal subsoil were a=0.06,n=1.2,and m=0.17,and temperature distribution trends between canals with different water contents were basically similar.Water will accumulate at the bottom as the liquid water content increases at the canal boundary.展开更多
Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coni...Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan展开更多
In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water con...In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.展开更多
Self assembled monolayers (SAMs) of 1-tetradecylphosphonic acids (TDPA, CH3(CH2)13P(O)(OH)2 ) were formed on the 2024 aluminum alloy surface in TDPA-containing ethanol-water solutions with different water co...Self assembled monolayers (SAMs) of 1-tetradecylphosphonic acids (TDPA, CH3(CH2)13P(O)(OH)2 ) were formed on the 2024 aluminum alloy surface in TDPA-containing ethanol-water solutions with different water content. The adsorption and corrosion protection properties of the SAMs for 2024 alloy in 0.1 mol/L H2SO4 solution were examined and characterized by potentiodynamic polarization, electrochemical impedance spectrum (EIS), Fourier transformed infrared spectroscopy (FTIR), Auger electron spectra (AES) and atomic force microscopy (AFM). FTIR and AES results show that the TDPA molecules were successfully adsorbed on the 2024 aluminum alloy surface, and the density of the SAMs increased with the increasing water content in the assembly solution. The results of electrochemical studies and corrosion morphologies observed by AFM show that a 4 h modification resulted in maximal inhibition efficiency, and the higher the water content in the assembly solution is, the better the inhibition performance of the SAMs can be achieved. The effect of water content in TDPA solutions on the performance of the SAMs is related to the hydration reaction of the metal surface.展开更多
基金the China Postdoctoral Science Foundation(Grant No.2024MD753992)Shaanxi Geotechnical Mechanics and Engineering Young Talent Support Program Project(Grant No.YESS2024005)the National Natural Science Foundation of China(Grant No.41931285).
文摘In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,environmental scanning electron microscopy(ESEM)and nuclear magnetic resonance(NMR)analyses were conducted to gain microstructural insights into loess behavior at the laboratory scale.The results indicate that the maximum saturated hydraulic conductivity is observed at the lowest compaction water content,particularly in the early stage of permeability tests.In particular,for loess compacted at water contents below the optimum(as determined by the modified Proctor compaction test),the hydraulic conductivity decreases throughout the permeability tests.Conversely,when the water content exceeds the optimum level,the hydraulic conductivity shows an increasing trend.In terms of compression behavior,when the as-compacted samples are loaded in oedometer conditions,an increase in material compressibility is observed with increasing compaction water content.Again,a different phenomenological behavior was observed when the compaction water content exceeded the optimum,i.e.an abrupt increase in loess compressibility.ESEM tests provide microstructural confirmation of this evidence,as the surface morphology of the compacted loess changes significantly with increasing compaction water content.The microstructural evolution was also quantified in terms of area ratio using image processing software.Finally,NMR was used to quantify the intra-and inter-aggregate water at different compaction water contents,once again highlighting a threshold for the presence or absence of inter-aggregate water similar to the optimum water content.
基金supported by the National Natural Science Foundation of China(42261028)the Chinese Academy of Sciences“Light of West China”Program for Western Young Scholars(23JR6KA027)+3 种基金the Science Foundation for Distinguished Young Scholars of Gansu Province(24JRRA167)the Key Research and Development Program on Ecological Civilization Construction of Gansu Province(25YFFA012)Gansu Provincial Science and Technology Plan Fund Project(24CXGA063)Scientific Research Projects on Ecological and Environmental Protection in Heilongjiang Province in 2023(Grant No.:HST2023ZR005)。
文摘Surface albedo,as one of the important properties of the underlying surface,has a significant impact on the surface energy balance in cold regions.However,due to the complexity of the factors affecting surface albedo,existing calculations still contain inaccuracies.Therefore,this study conducted surface albedo experiments on loess with different water contents and temperatures.By analyzing the surface albedo measurements of samples with varying temperature and water content levels,as well as the soil freezing characteristic curve(SFCC)and soil-water characteristic curve(SWCC)of loess,the study explores the influence of soil temperature and water content on the surface albedo of loess.The results indicate that both the temperature and water content of loess jointly affect surface albedo.During the process of albedo change,there exists a water content threshold that alters the trend of surface albedo.Soil temperature influences surface albedo by affecting the content of pore ice and liquid water within the soil.When the water content of loess is relatively low,the surface albedo decreases as the unfrozen water content decreases.However,this trend changes as the water content of loess increases.Additionally,a decrease in soil temperature lowers the moisture content threshold during the changes in surface albedo.This study provides a reference for exploring and determining the surface energy balance in cold regions under the background of warm and humid climates,as well as for establishing thermal calculation boundaries.
基金the National Natural Science Foundation of China(Grant Nos.42172298,42002289)the Shanghai Geological Star Program for their financial support.
文摘Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were conducted,with varying pressures from 400 kPa to 800 kPa,to quantitatively evaluate the densification effect in unsaturated soils.The response of surrounding soil during compaction grouting was monitored.The changes in dry density and void ratio induced by compaction grouting were obtained by monitoring volumetric water content to determine compaction efficiency.In addition,a model was developed and validated to predict the effective compaction range.The results show that soil dry density increased rapidly during compaction grouting before being stabilized at a consistent level.As expected,it is positively correlated with grouting pressures(GPs)and negatively correlated with the distance from the injection point.At higher GPs,the difference in densification effect around the injection point after compaction grouting was significant.Interestingly,variations in ultimate dry density and peak earth pressures perpendicular to the injection direction exhibited axisymmetric behavior around the injection point when comparing the dry density and earth pressure results.Furthermore,soil densification resulted in a decrease in suction.However,no significant effect of GP on suction at different soil positions was observed.Moreover,compaction efficiency decreased with increasing distance from the injection point,showing a strong linear relationship.In addition,the model results for the effective compaction range were basically consistent with the extrapolated values from the experimental results.
基金Projects(52174096, 52304110) supported by the National Natural Science Foundation of China。
文摘Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground water is of great significance. Compression and creep experiments on sandstone with varying water contents were conducted using a deep soft rock five-linked rheological experiment system. The experimental conditions, including water content (0%, 0.8%, 1.6%, 2.4% and 3.3%) and confining pressure (0, 6, 9 and 12 MPa), were determined based on pressure-free water absorption tests and in-situ stress measurements. The experimental results show that the compressive strength, creep failure stress, and dilatancy stress of sandstone decrease exponentially with increasing water content, while they increase exponentially with confining pressure. The ratio of lateral to axial instantaneous strain increases nearly linearly with the increase of stress, and the lateral creep strain characteristics of the sample are more significant than the axial ones. The duration of the attenuation creep stage of sandstone decreases with increasing water content and increases with increasing confining pressure. The lateral strain enters the steady-state creep stage before the axial strain, and the onset time of the accelerated creep stage of lateral strain under the failure stress is earlier than that of axial strain. The long-term strength of sandstone was determined based on the lateral steady-state creep rate curve, showing a negative exponential relationship with water content and a positive exponential relationship with confining pressure. A method for determining the long-term strength of rocks based on the ratio of lateral strain to axial strain (μc) is proposed, which is independent of water content. The research results provide a reliable theoretical basis for the analysis of the long-term stability of roadways under the influence of groundwater and the early prediction of creep failure.
基金funded by the National Science Foundation of China(CN)(Nos.42090054,41922055,41931295)the Key Research and Development Program of Hubei Province of China(No.2020BCB079)。
文摘Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding.
基金supported by the National Natural Science Foundation of China(Nos.42275116 and 41975172).
文摘Aerosol hygroscopicity and liquid water content(ALWC)have important influences on the environmental and climate effect of aerosols.In this study,we measured the hygroscopic growth factors(GF)of particles with dry diameters of 40,80,150,and 200 nm during the wintertime in Nanjing.Both the GF-derived hygroscopicity parameter(κ_(gf))and ALWC increased with particle size,but displayed differing diurnal variations,withκ_(gf)peaking around the midday,while ALWC peaking in the early morning.Nitrate,ammonium and oxygenated organic aerosols(OOA)were found as the chemical components mostly strongly correlated with ALWC.A closure study suggests that during midday photo-oxidation and nighttime high ALWC periods,theκof organic aerosols(κ_(org))was underestimated when using previous parameterizations.Accordingly,we re-constructed parameterizations forκ_(org)and the oxidation level of organics for these periods,which indicates a higher hygroscopicity of photochemically formed OOA than the aqueous OOA,yet both being much higher than the generally assumed OOA hygroscopicity.Additionally,in a typical high ALWC episode,concurrently increased ALWC,nitrate,OOA as well as aerosol surface area and mass concentrations were observed under elevated ambient RH.This strongly indicates a coupled effect that the hygroscopic secondary aerosols,in particular nitratewith strong hygroscopicity,led to large increase in ALWC,which in turn synergistically boosted nitrate and OOA formation by heterogeneous/aqueous reactions.Such interaction may represent an important mechanism contributing to enhanced formation of secondary aerosols and rapid growth of fine particulate matter under relatively high RH conditions.
文摘Soil color changes with water content due to chemical and physical reactions,making it a potential indicator for moisture estimation.By analyzing soil surface images and comparing color variations against laboratory-measured water content,a rapid and cost-effective method for moisture determination can be developed.Traditional moisture measurement techniques are time-consuming,so an imaging-based approach would be highly beneficial for quick decision-making.Soil color is also influenced by factors such as particle coarseness,which creates shadows and alters perceived darkness.This research introduces a novel method to isolate true soil color by analyzing the maximum color response in image pixels,minimizing shadow effects.Several equations were derived to correlate color changes with moisture content and were validated against lab measurements to ensure accuracy and simplicity.The most effective equation can be further adapted for satellite imagery by accounting for atmospheric light scattering differences between ground and satellite sensors,enabling large-scale moisture monitoring.The derived equations can be programmed into a software tool,allowing moisture estimation from simple soil surface images.The study involved controlled experiments where soil samples at varying moisture levels were imaged to establish an empirical color-moisture relationship.This method provides a fast,economical,and practical alternative to conventional techniques.However,the approach requires further refinement to account for different soil types globally.Future work should focus on adjusting the model with variables that adapt the color-moisture relationship for diverse soils,ensuring broader applicability.Once optimized,this could significantly improve moisture assessment in agriculture,environmental monitoring,and land management.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has emerged as a frontier and hotspot in soil water content measurement,offering advantages such as easy installation,large-scale distributed measurement capability,and resistance to electromagnetic interference.However,current AHFO water content sensors fail to simultaneously achieve high precision,applicability for deep soil,and automated real-time monitoring,thereby limiting their development and application.Therefore,this study introduces a novel actively heated fiber Bragg grating(AH-FBG)cable.Laboratory tests were conducted to assess the heating uniformity of the AH-FBG cable and to establish the temperature characteristic value(T_(t))-soil water content(θ)calibration formula for water content measurement.Subsequently,AH-FBG cables were deployed for in situ soil water content monitoring in a test pit on the Loess Plateau.Through two-year monitoring data verified the accuracy of the AH-FBG cable and elucidated the spatiotemporal distribution of in situ loess water content.Laboratory results demonstrated superior heating uniformity of AHFBG cable,with a T_(t) standard deviation of approximately 0.3℃.In the field,the AH-FBG cable exhibited excellent performance in soil water content measurement,achieving a high accuracy of 0.023 cm^(3)/cm^(3).Further analysis revealed that the θ fluctuation predominantly occurred within a 10 m depth from the soil surface,with an overall upward trend over the two-year monitoring period;the response of shallow θ to precipitation was significant but exhibited increasing hysteresis with depth;frequent precipitation significantly enhanced water infiltration depth.This study provides technical guidance for highprecision,quasi-distributed,automated and real-time water content measurement of deep soil.
基金National Natural Science Foundation of China (No. 52204101)Natural Science Foundation of Shandong Province (No. ZR2022QE137)Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB (No. SKLGDUEK2023).
文摘Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.
基金supported in part by the National Natural Science Foundation of China under Grant No.51804347.
文摘Suitable water content plays a decisive role in the granulation of sintering mixtures.Herein,a method was proposed to predict the suitable water content for effective granulation on the basis of Litster's granulation model.The granulation effectiveness of a sintering mixture was predicted by the model,with the allowance error of±10%.The effects of the water absorption properties,particle size composition and content of adhesive particles on the suitable water content were studied.The results showed that the allowable error of prediction was within±0.5%compared to the experimentally determined suitable water content.With an increase in adhesive powder content of mixtures with higher water absorption,the suitable water content increased to achieve similar granulation effectiveness.Moreover,as the amount of concentrates increased,the suitable water content first increased and then remained steady.The influence of the water absorption characteristics of the adhesive particles on the suitable water content was less than that of their particle size composition in the mixture.
文摘Significant waste resources are generated in the form of water-oil emulsions.These emulsions cannot be effectively destroyed on an industrial scale by traditional methods that rely on the settling of the aqueous phase,and therefore,they accumulate in large quantities.Thermomechanical dehydration,based on the evaporation of the water phase,presents a promising process for recycling such waste.However,within the framework of thermomechanical dehydration,the issue of optimizing energy costs for heating raw materials and controlling the water content in the product arises.Standard methods of determining water content under the boiling conditions of highly stable water-hydrocarbon emulsions are characterized by low efficiency,as they require constant sampling and the involvement of additional equipment and personnel.Consequently,this presents a challenge in predicting and creating an automated thermomechanical dehydration process.Therefore,dynamic curves depicting changes in the water content of these emulsions,depending on the temperature of the boiling liquid,have been obtained.It is proposed to determine the rate of temperature increase(dT/dt)of the boiling emulsion for continuous,real-time monitoring of the residual water content and for recording the moment of complete dehydration.Achieving a boiling emulsion temperature of 130-170℃(or higher)and/or the rate of temperature increase from 3.0 to 5.5(or above)indicates the complete dehydration of the emulsion.The proposed method can be implemented in any industrial or laboratory-scale unit for thermomechanical dehydration without significant capital costs.It is based on the use of simple devices consisting of temperature sensors and a computing unit for determining the temperature and rate of heating.
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.
基金This research was funded by the National Natural Science Foundation of China(51709194),Qinglan Project of Jiangsu University,the Priority Academic Program Development of Jiangsu Higher Education Institutions,and Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering.
文摘The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.
基金supported by the National Natural Science Foundation of China(Grant No.42377191)Hubei Provincial Natural Science Foundation of China(Grant No.2021CFA094)“The 14th Five Year Plan”Hubei Provincial advantaged characteristic disciplines(groups)project of Wuhan University of Science and Technology(Grant No.2023A0303)。
文摘The unfrozenwater content(UWC)is a crucial parameter that affects the strength and thermal properties of rocks in relation to engineering construction and geological disasters in cold regions.In this study,three different methods were employed to test and estimate the UWC of saturated sandstones,including nuclear magnetic resonance(NMR),mercury intrusion porosimetry(MIP),and ultrasonic methods.The NMR method enabled the direct measurement of the UWC of sandstones using the free induction decay(FID).The MIP method was used to analyze the pore structures of sandstones,with the UWC subsequently calculated based on pore ice crystallization.Therefore,the MIP test constituted an indirect measurement method.Furthermore,a correlation was established between the P-wave velocity and the UWC of these sandstones based on the mixture theory,which could be employed to estimate the UWC as an empirical method.All methods demonstrated that the UWC initially exhibited a rapid decrease from 0C to5C and then generally became constant beyond20C.However,these test methods had different characteristics.The NMR method was used to directly and accurately calculate the UWC in the laboratory.However,the cost and complexity of NMR equipment have precluded its use in the field.The UWC can be effectively estimated by the MIP test,but the estimation accuracy is influenced by the ice crystallization process and the pore size distribution.The P-wave velocity has been demonstrated to be a straightforward and practical empirical parameter and was utilized to estimate the UWC based on the mixture theory.This method may be more suitable in the field.All methods confirmed the existence of a hysteresis phenomenon in the freezing-thawing process.The average hysteresis coefficient was approximately 0.538,thus validating the GibbseThomson equation.This study not only presents alternative methodologies for estimating the UWC of saturated sandstones but also contribute to our understanding of the freezing-thawing process of pore water.
基金supported by the Jiangsu province Seed Industry Revitalization project[JBGS(2021)002]Beijing Germplasm Creation and Variety Selection and Breeding Joint Project[NY2023-180].
文摘Grain water content(GWC)is a key determinant for mechanical harvesting of maize(Zea mays).In our previous research,we identified a quantitative trait locus,qGWC1,associated with GWC in maize.Here,we examined near-isogenic lines(NILs)NILL and NILH that differed at the qGWC1 locus.Lower GWC in NILL was primarily attributed to reduced grain water weight(GWW)and smaller fresh grain size,rather than the accumulation of dry matter.The difference in GWC between the NILs became more pronounced approximately 35 d after pollination(DAP),arising from a faster dehydration rate in NILL.Through an integrated analysis of the transcriptome,proteome,and metabolome,coupled with an examination of hormones and their derivatives,we detected a marked decrease in JA,along with an increase in cytokinin,storage forms of IAA(IAA-Glu,IAA-ASP),and IAA precursor IPA in immature NILL kernels.During kernel development,genes associated with sucrose synthases,starch biosynthesis,and zein production in NILL,exhibited an initial up-regulation followed by a gradual down-regulation,compared to those in NILH.This discovery highlights the crucial role of phytohormone homeostasis and genes related to kernel development in balancing GWC and dry matter accumulation in maize kernels.
文摘In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.
基金Heilongjiang Provincial Key Research and Development Program Project,Grant/Award Number:JD2023SJ46National Natural Science Foundation of China,Grant/Award Number:U20A20318+3 种基金General program of China Post doctoral Fund,Grant/Award Number:2021M690946Major Science and Technology Project of Ministry of Water Resources,Grant/Award Number:SKS-2022095Heilongjiang Provincial Research Institutes Scientific Research Business Fund Project,Grant/Award Number:CZKYF2023-1-A009General program of China Postdoctoral Fund(2021M690946).
文摘In seasonal frozen soil,freezing and thawing can change the physical and mechanical properties and affect slope stability.There are complex moisture conditions in the main water transfer canal.A study of the hydrothermal evolution of canals with different initial water contents under the action of freezing and thawing is of great importance for the prevention and control of canal slope slides.Hydrothermal coupling models are the key to revealing the canal's hydrothermal evolution.As some of the modeling parameters in the current hydrothermal coupling model are based on empirical values,particularly those in the van Genuchten equation,which are not necessarily related to soil properties,they are not suitable for analyzing the hydrothermal evolution of canals.This paper determines the soil-water characteristic curve from the cumulative curve of particle gradation in the subsoil,and then determines the hydraulic parameters of the subsoil using the VG model,which then corrects the hydrothermal coupling model.The method of modifying the hydrothermal coupling model is original,which makes the model more realistically reflect drainage soil characteristics.During freezing and thawing of channel slopes with different initial water contents(21%,25%,29%,33%,37%,and 41%),temperature field,water field,and ice content distributions were investigated.Using the V-G model,the optimal parameters for canal subsoil were a=0.06,n=1.2,and m=0.17,and temperature distribution trends between canals with different water contents were basically similar.Water will accumulate at the bottom as the liquid water content increases at the canal boundary.
基金This study was supported by grant from the National Natu-ral Science Foundation of China (No. 30271068) the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ
文摘Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan
基金The Natural Science Foundation of Jiangsu Province(No. BK2011618)
文摘In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.
基金Project(Q20120110)supported by Youth Foundation of Hubei Provincial Education Bureau,ChinaProject(2009CDB347)supported by the Hubei Provincial Natural Science Foundation,ChinaProject(51001045)supported by the National Natural Science Foundation of China
文摘Self assembled monolayers (SAMs) of 1-tetradecylphosphonic acids (TDPA, CH3(CH2)13P(O)(OH)2 ) were formed on the 2024 aluminum alloy surface in TDPA-containing ethanol-water solutions with different water content. The adsorption and corrosion protection properties of the SAMs for 2024 alloy in 0.1 mol/L H2SO4 solution were examined and characterized by potentiodynamic polarization, electrochemical impedance spectrum (EIS), Fourier transformed infrared spectroscopy (FTIR), Auger electron spectra (AES) and atomic force microscopy (AFM). FTIR and AES results show that the TDPA molecules were successfully adsorbed on the 2024 aluminum alloy surface, and the density of the SAMs increased with the increasing water content in the assembly solution. The results of electrochemical studies and corrosion morphologies observed by AFM show that a 4 h modification resulted in maximal inhibition efficiency, and the higher the water content in the assembly solution is, the better the inhibition performance of the SAMs can be achieved. The effect of water content in TDPA solutions on the performance of the SAMs is related to the hydration reaction of the metal surface.