This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and e...This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and enhance the gross national product. The process starts by collecting low-cost sheep fleece from farms and processed via a production line, including scouring, plucking, carding, thermal bonding, and packing. The design process involves determining an optimal location, infrastructure, staffing, machinery, environmental impact, and utilities. A final economic analysis is undertaken to estimate the product’s cost, selling price, and break-even point based on the anticipated capital and operational costs. The plant is intended to process 6778 tons of sheep wool annually. The study suggests that Mafraq Industrial City is a perfect location for the plant, and purchasing land and structures is the optimal option. The projected capital cost is 1,416,679 USD, while the anticipated operational costs amount to 3,206,275 USD. Insulation material production is estimated to be 114,756 m3 annually. The material may be manufactured into 1 m wide, 0.05 m thick sheets for 2.02 USD per square meter. Thus, for a 10-year plant, a 2.47 USD/m2 selling price breaks even in one year.展开更多
On January 4,the State Council,China's highest state administrative organ,unveiled the solid waste comprehensive management action plan,China's first policy document systematically outlining comprehensive trea...On January 4,the State Council,China's highest state administrative organ,unveiled the solid waste comprehensive management action plan,China's first policy document systematically outlining comprehensive treatment of solid waste.展开更多
To deal with a polluted by-product of coal production,central China’s Shanxi Province has explored a governance path that addresses both the symptoms and root causes.
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi...The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.展开更多
Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may po...Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management.展开更多
Foliar uptake of airborne metal(loid)s plays a crucial role in metal(loid)accumulation in plant organs and is influ-enced by the size and emission sources of aerosols.Given the high enrichment of toxic metal(loid)s in...Foliar uptake of airborne metal(loid)s plays a crucial role in metal(loid)accumulation in plant organs and is influ-enced by the size and emission sources of aerosols.Given the high enrichment of toxic metal(loid)s in submicron-scale particulates(PM1),this study established a PM1 exposure system to examine airborne metal(loid)accu-mulation and foliar physiological responses in Oryza sativa L.The results showed that the concentrations of Cu,Zn,As,Pb,and Cd in the leaves and grains were influenced not only by the airborne metal(loid)levels but also by the specific nature of the PM1 particles.The quantitative model for PM1-associated Pb entry into leaf tissue indicated that foliar Pb accumulation was primarily driven by particle adhesion,followed by hydrophilic pene-tration and trans-stomatal liquid film migration,accounting for 87%–89%of the total accumulation.The strong hygroscopicity and high Pb activity of PM1 emitted from waste incineration(WI)increased the Pb absorption coefficient via the hydrophilic and liquid film migration pathway.In contrast,the high hydrophobicity of PM1 from coal burning(CB)led to greater retention of Pb on leaf surfaces.Both foliar reactive oxygen metabolism and photosynthesis indices were sensitive to air pollution.Foliar metal(loid)accumulation and airborne PM1 concentration accounted for the variance in physiological responses in rice leaves.Our results also indicated that Pb was the key element in PM1 emissions from both coal burning(CB)and waste incineration(WI)responsible for significant physiological changes in rice leaves.展开更多
Objective To study correlations of polychlorinated biphenyls (PCBs), DIOXIN, and polybrominated diphenyl ethers (PBDE) with thyroid stimulating hormone(TSH) in children, and assess the impact on children's heal...Objective To study correlations of polychlorinated biphenyls (PCBs), DIOXIN, and polybrominated diphenyl ethers (PBDE) with thyroid stimulating hormone(TSH) in children, and assess the impact on children's health. Methods Three hundred and sixty nine children aged from 6 to 8, including 195 from Luqiao, the computer E‐waste recycling area, and 174 from Longyou, the control area, were selected for this investigation to elucidate the correlation of PCBs, DIOXIN, and PBDE with TSH in children’s blood samples. The children had a physical examination and their blood levels of PCBs, DIOXIN, PBDE, and TSH were detected after sample collection. Results In the E‐waste recycling area, the contents of PCBs, PBDE, DIOXIN, and TSH in the blood samples of children were 484.00±84.86 ng·g ‐1 lipid weight, 664.28±262.38 ng·g ‐1 lipid weight, 26.00±19.58 ng·g ‐1 lipid weight and 1.88±0.42 μIU/mL (serum) respectively, while in the control area, the PCBs, PBDE, DIOXIN, and TSH contents were 255.38±95 ng·g ‐1 lipid weight, 375.81±262.43 ng·g ‐1 lipid weight, 39.64±31.86 ng·g ‐1 lipid weight, and 3.31±1.04 μIU/mL respectively. Conclusion The health status of children in the control area are better than that in the contaminated area. Among children who are exposed to persistent organic pollutants, the pollutant content increases significantly in their serum, and the distribution of TSH levels in their bodies are also affected.展开更多
The direct emission of waste refinery gas after combustion will cause a severe greenhouse effect.Recovering high-value-added ethylene from wasted refinery gas has fundamental economic and environmental significance. D...The direct emission of waste refinery gas after combustion will cause a severe greenhouse effect.Recovering high-value-added ethylene from wasted refinery gas has fundamental economic and environmental significance. Due to the complexity of the composition of refinery waste gas, designing and optimizing the whole recovery process is still a challenging task. Herein, a novel process(SCOAS) was proposed to obtain polymer-grade ethylene from wasted refinery gas through a direct separation process,and heat pump-assisted thermal integration optimization(HPSCOAS) was carried out. The unique feature of the novel approach is that a new stripper and ethylene reabsorber follow the dry gas absorber to ensure ethylene recovery and methane content. An industrial model, shallow cooling oil absorption(SCOA), and concentration combined cold separation system of ethylene unit using wasted refinery gas was established to analyze the technology and environment. Based on the detailed process modeling and simulation results, the quantitative sustainability assessment of economy and environment based on product life cycle process is carried out. The results show that compared with the traditional process when the same product is obtained, the total annual cost of the HPSCOAS process is the lowest, which is 15.4% lower than that of the SCOA process and 6.1% lower than that of the SCOAS process. In addition,compared with the SCOA process and the HPSCOAS process, the SCOAS process has more environmental advantages. The non-renewable energy consumed by SCOAS is reduced by about 24.8% and 6.1%, respectively. The CO_(2) equivalent is reduced by about 38.6% and 23.7%.展开更多
A hydrogen liquefaction concept with an innovative configuration and a capacity of 4 kg·s^(-1)(345.6 t·d^(-1))is developed.The concept involves an ammonia absorption refrigeration system for the pre-cooling ...A hydrogen liquefaction concept with an innovative configuration and a capacity of 4 kg·s^(-1)(345.6 t·d^(-1))is developed.The concept involves an ammonia absorption refrigeration system for the pre-cooling of hydrogen and MR streams from 25℃ to-30℃.The ammonia absorption refrigeration system is fed by exhaust gases of the Pa rand gas power plant that are normally dissipated to the environment with a temperature of 546℃.The simulation is performed by Aspen HYSYS V9.0,using two separate equations of state for simulating hydrogen and MR streams to gain more accurate results especially for ortho-para conversion.Results show that conversion enthalpy estimated by Aspen HYSYS,fits very well to the experimental data.Determining the important independent variables and composition of MRs are done using trial and error procedure,a functional and straightforward method for complicated systems.The minimum temperature limit in the cooling section is lowered,and an ortho-para converter is implemented in this section.The proposed concept performs well from energy aspects and leads to COP and SEC equal to 0.271 and 4.54 kW·h·kg^(-1),respectively.The main advantage of this study is in the low SEC,eliminating the losses of the distribution network,and improving the ability of the hydrogen liquefaction for energy storage in off-peak times.展开更多
In this study,the feasibility of producing eco-friendly bricks by using geopolymer technology and a waste grinding wheel(WGW)from the grinding wheel industries was investigated.Nowadays,in order to meet industrial nee...In this study,the feasibility of producing eco-friendly bricks by using geopolymer technology and a waste grinding wheel(WGW)from the grinding wheel industries was investigated.Nowadays,in order to meet industrial needs,for instance,in Taiwan,approximately 500,000 grinding wheels are used annually.That is,a large number of“waste”grinding wheels are produced.Furthermore,few studies have been conducted on the use of WGWs as raw materials in geopolymer applications.The use of geopolymer technology to form bricks can avoid the utilization of clay and cement and even prevent the use of a high-temperature process in kilns.Moreover,it can decrease CO_(2) emission and energy consumption and thus,protect the environment.In this study,the following three major factors were considered:press-forming pressure(70 and 100 kgf/cm2),NaOH molar concentration(2 and 4M),and the ratio of binder fineaggregate(1:3,1:4,and 1:5).Under these conditions,the specimens were tested using the compressive strength test,water absorption test,microstructure analysis,a freezing–thawing test and toxicity characteristic leaching procedure test.The optimal formulation was composed of 1:4 binder fine-aggregate ratio,4M NaOH concentration,and 100-kgf/cm2 pressure.Furthermore,we used a WGW and achieved a compressive strength of 50.6 MPa after 28 days,which was greater than 32 MPa and conformed to the Grade A brick standard of National Standards of the Republic of China(13295).In conclusion,this brick fabrication method based on geopolymer technology was not only beneficial to the environment but also improved the efficiency of reutilizing WGW.展开更多
An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced s...An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced soil washing (SESW) process. The main goal of this study was to characterize the contaminated soil in terms of TPHs, BTEX, PAHs, and metals contents as well as microbiologically (total heterotrophs and specific degrading microorganisms). We also aimed to determine the surfactant type and concentration to be used in the SESW process for the automotive waste oil contaminated soil. At the end, sixteen kg of contaminated soil were washed and the produced wastewater (approximately 40 L) was characterized in terms of COD, BOD;solids, and other physico-chemical parameters. The soil contained about 14,000 mg of TPH/kg soil (heavy fraction), 0.13 mg/kg of benzo (k) fluoranthene and 0.07 mg/kg of benzo (a) pyrene as well as traces of some metals. Metals concentrations were always under the maximum concentration levels suggested by Mexican regulations. 15 different surfactants were used to identify the one with the capability to achieve the highest TPH removal. Surfactants included 5 anionics, 2 zwitterionic, 5 nonionics and 3 natural gums. Sulfopon 30 at a concentration of 0.5% offered the best surfactant performance. The TPH removals employing the different surfactants were in the range from 38% to 68%, in comparison to the soil washing with water (10% of TPH removal). Once the surfactant was selected, 70 kg of soil were washed and the resulting water contained approximately 1300 mg/L of COD, 385 mg/L of BOD (BOD/COD = 0.29), 122 mg/L of MBAS, and 212 mg/L of oil and greases, among other contaminants.展开更多
Wasting has been observed as a common feature of the human immunodeficiency virus (HIV) disease since the first reports and its presence increases the risk of death. There is no consensus on how to manage wasting asso...Wasting has been observed as a common feature of the human immunodeficiency virus (HIV) disease since the first reports and its presence increases the risk of death. There is no consensus on how to manage wasting associated with HIV. The goal of this study was to assess the effectiveness of a locally made Chickpea Sesame Based RUTF (CS-RUTF) in treating wasting associated with HIV in developing countries. Chronically sick adults from Mangochi Health District (Malawi) with wasting and confirmed or presumptive clinical diagnosis of HIV were recruited for the study. Subjects received a daily ration of 500 grams of CS-RUTF for 3 to 5 months. Nutrition status changes and mortality were used to assess the effectiveness of the intervention. There were 3 patterns of anthropometric responses continuous weight gain (WG), static weight (SW) and continuation weight loss (WL). The distribution of the 3 patterns is 53.9% (82/154) for the WG pattern, 9.1% (14/154) for the SW pattern and 37.0% (57/154) for the WL pattern. For the WG pattern, the overall median weight gain was 4.6 (2.4 to 7.1) kg. It was 5.7 (3.5 to 7.8) kg for those who completed 3 months of sup-plementation. MUAC and BMI changes followed similar pattern than weight change. Not being on HAART, acute diarrhoea during follow up, episode of reduced appetite during follow up, missing at least one visit were identified as risk factors for intervention failure. Overall, 38.5% (72/187) of study participants died during the intervention. In conclusion, despite that the study confirms the limited impact of food based interventions on mortality among wasted HIV positive individuals, it also suggests that supplementation with CS-RUTF may be an effective intervention for reversing wasting associated with HIV if combined with HAART and specific treatment of severe opportunistic infection causing diarrhoea and reducing appetite.展开更多
In the global environment of pursuing resource regeneration and green environmental protection, more and more wasted clothing need to be solved. In order to make full use of the wasted clothing and save land and soil ...In the global environment of pursuing resource regeneration and green environmental protection, more and more wasted clothing need to be solved. In order to make full use of the wasted clothing and save land and soil resources, an idea of wasted clothing's recycling and remanufacturing is put forward. In the new idea a pricing game model is established basing on Stacklberg differential game theory between traditional and remanufactured clothing. In this model, the differences in consumers' willingness to pay and the government's subsidies are considered. Government's optimal subsidy are obtained which ensure not only the interests of manufacturers but also environmental reputation and maximum social benefits. The study is helpful to push the wasted clothing's recycling and remanufacturing plan. It makes some index more precise quantification as government's subsidy, manufacturers and the social benefits. Government and manufactures can make the detailed cooperation plan reference to it.展开更多
The collected tungsten carbide/cobalt scrapped waste typically contains approximately 90% tungsten carbide and 10% cobalt.A nitric method is used to extract tungsten and cobalt from tungsten-containing waste.The waste...The collected tungsten carbide/cobalt scrapped waste typically contains approximately 90% tungsten carbide and 10% cobalt.A nitric method is used to extract tungsten and cobalt from tungsten-containing waste.The waste is first dissolved in nitric acid,which then makes cobalt soluble and becomes cobalt nitrate solution.The waste also oxidizes tungsten carbide to insoluble tungstenic acid precipitate.If tungsten carbide scraps are obtained from leftover of LCD glass cutting,after applying the same process as above,the remaining glass also needs to be separated from the tungstenic acid.XRF analysis shows that 93.8% of cobalt and 97.72% of tungsten can be obtained separately by this wet chemical method.By ICP analysis,no more tungsten ion remains after 2 h reaction in the cobalt recovery when 12 N of nitric acid is used for oxidation.The recovery materials obtained for tungsten are tungsten oxide and for cobalt a mixture of Co3O4 and CoO.展开更多
Electronic scrap, especially wasted printed circuit boards (PCBs), is regarded as an environmental challenge. At present, the physical separation is thought to be the environmental friendly and economical method of tr...Electronic scrap, especially wasted printed circuit boards (PCBs), is regarded as an environmental challenge. At present, the physical separation is thought to be the environmental friendly and economical method of treating and reutilizing electronic waste. An effective liberation of metals from non metallic components is a crucial step towards mechanical separation and recycling of wasted PCBs. In this paper, the selective shredding theory and mechanics characteristics of wasted PCBs were analyzed, and the shredded experiments of wasted PCBs by hammer mill were investigated. The result shows that the selective shredding exists in the wasted PCBs shredded process by hammer mill. The shredding velocity of non metallic components is far greater than that of metals in the wasted PCBs shredding, which makes the metals concentrate in the coarser fraction. And the impact force of hammer mill is superior to metal liberation from non metallic components, a satisfied metal liberation degree can be achieved in the wasted PCBs shredding by hammer mill.展开更多
The life of electronic equipment is becoming increasingly shorter and its replacement always generates a quantity of waste increase, giving rise to a problem of environmental character and still needed new options of ...The life of electronic equipment is becoming increasingly shorter and its replacement always generates a quantity of waste increase, giving rise to a problem of environmental character and still needed new options of solid waste management that will contribute to global sustainable development. Parts of these waste are TCI (the card's printed circuit) which containing dangerous elements and turns them into a polluting material from the soil, water and air, being harmful to human health if there is to proper and responsible way, so the recycling of TCI to obtain precious metals is an example of industrial materials that can be recycled. Despite this, large quantities of these are not recycled and some others are not considered. The objective of this work is to present a systematic and ecological methodology for the recovery of valuable materials contained in parts of used in computers, circuit boards using a leaching process. The method determines a set of variables to evaluate the kinetics of the reaction and the leaching of metals that form the substrate of metal and to establish the parameters that affect the rate of leaching of metals through a sensitivity analysis, to identify design alternatives. It determines the quantity and percentages that constitutes the motherboard, processor, video cards, accelerator graphics, network and memory cards RAM, among others and its content of metals such as Cu, Fe, Ag, Au and Pt.展开更多
The Kingdom of Saudi Arabia produces over one million metric tons annually, which returns a 20% of wasted dates annually. Lactic acid and its derivatives are widely used in food, pharmaceutical and textile industries....The Kingdom of Saudi Arabia produces over one million metric tons annually, which returns a 20% of wasted dates annually. Lactic acid and its derivatives are widely used in food, pharmaceutical and textile industries. There has been an increase in lactic acid production because it is used as a raw material to produce polylactic acid, a polymer that is used as a special medical and environmental friendly biodegradable plastic. This study aimed to use wasted dates to produce lactic acid by single culture Lactobacillus casei (ATCC 393), Lactobacillus acidophilus (CICC 6088) and the mixed culture using batch fermentation. The investigation results showed that the maximum concentration of lactic acid for ATCC 393, CICC 6088 and the mixed culture are 87, 84 and 84 g/l respectively. For single CICC 6088 and the mixed culture, the total percentage of glucose and fructose utilized was found to be 100%;76%, respectively, whereas in the case of the single culture ATCC 393, the total percentage of glucose and fructose were 100% and 72%, respectively. With regard to lactic acid concentration, and sugar consumption, the results revealed that the single culture ATCC 393 produced the optimum lactic acid of 87 g/l for 48 hr with initial sugar concentration of 90 g/l.展开更多
In this work the radiological dose and risks resulting from recycling of radioactive contaminated NORM scrap metal that produced from one of oil and gas production companies in Egypt, were determined by using RESRAD-R...In this work the radiological dose and risks resulting from recycling of radioactive contaminated NORM scrap metal that produced from one of oil and gas production companies in Egypt, were determined by using RESRAD-RECYCLE computer code. Two scenarios were used: the first was the workers’ scenario, while the second was end-use product scenario. Workers’ scenario was used in this study for evaluating the dose and risk to workers who process recycled materials. This scenario focused on the transport of radioactive NORM scrap metal from the place of origin to the smelter (scrap delivery step). Scenarios for six different workers were included under the scrap delivery step: two workers scrap cutter, two workers scrap loader, and two workers scrap truck driver. The values for each scenario were specified on the basis of processing 200 tons of NORM scrap metal. Because these operations occur before melting of the metal, mass and radionuclide partitioning factors were not applied in the scrap metal delivery step. The radionuclide concentration of the NORM scrap metal was used directly in the dose calculation. The maximum doses received from direct external exposure to all radio nuclides during cutter/sorter, scrap truck driver and unloading of scrap metals were 2.14E-04, 1.4E-06 and 1.86E-05 (mSv) respectively. The excess cancer risks for all radio nuclides during cutter/sorter of scrap metals reached 1.25E-07. Radiation exposures incurred by the scrap unloaders and scrap cutters/sorters were greater than those incurred by the other workers for their closer exposure distances and longer time.展开更多
文摘This applied research seeks to explore feasible plant design for manufacturing insulation materials for construction projects using waste sheep fleece to address environmental issues related to wasted sheep wool and enhance the gross national product. The process starts by collecting low-cost sheep fleece from farms and processed via a production line, including scouring, plucking, carding, thermal bonding, and packing. The design process involves determining an optimal location, infrastructure, staffing, machinery, environmental impact, and utilities. A final economic analysis is undertaken to estimate the product’s cost, selling price, and break-even point based on the anticipated capital and operational costs. The plant is intended to process 6778 tons of sheep wool annually. The study suggests that Mafraq Industrial City is a perfect location for the plant, and purchasing land and structures is the optimal option. The projected capital cost is 1,416,679 USD, while the anticipated operational costs amount to 3,206,275 USD. Insulation material production is estimated to be 114,756 m3 annually. The material may be manufactured into 1 m wide, 0.05 m thick sheets for 2.02 USD per square meter. Thus, for a 10-year plant, a 2.47 USD/m2 selling price breaks even in one year.
文摘On January 4,the State Council,China's highest state administrative organ,unveiled the solid waste comprehensive management action plan,China's first policy document systematically outlining comprehensive treatment of solid waste.
文摘To deal with a polluted by-product of coal production,central China’s Shanxi Province has explored a governance path that addresses both the symptoms and root causes.
基金supported by the National Natural Science Foundation of China(No.52436008)the Inner Mongolia Science and Technology Projects,China(Nos.JMRHZX20210003 and 2023YFCY0009)+3 种基金the Huaneng Group Co Ltd.,China(No.HNKJ23-H50)the National Natural Science Foundation of China(No.22408044)the China Postdoctoral Science Foundation(No.2024M761877)the National Key R&D Program of China(No.SQ2024YFD2200039)。
文摘The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.
基金supported by the National Natural Science Foundation of China(No.22176200)the Industrial Innovation Entrepreneurial Team Project of Ordos 2021.
文摘Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management.
基金supported by a grant from NIH(R01AI132695)to RM。
文摘Chronic wasting disease—a prion disease affecting cervids:Many neurological conditions,including Alzheimer's and Parkinson's diseases,amyotrophic lateral sclerosis,frontotemporal dementias,among others,are caused by the accumulation of misfolded proteins in the brain.These diseases affect not only humans,but also animals.
基金supported by the National Natural Science Foundation of China(Nos.42077367 and 21677123).
文摘Foliar uptake of airborne metal(loid)s plays a crucial role in metal(loid)accumulation in plant organs and is influ-enced by the size and emission sources of aerosols.Given the high enrichment of toxic metal(loid)s in submicron-scale particulates(PM1),this study established a PM1 exposure system to examine airborne metal(loid)accu-mulation and foliar physiological responses in Oryza sativa L.The results showed that the concentrations of Cu,Zn,As,Pb,and Cd in the leaves and grains were influenced not only by the airborne metal(loid)levels but also by the specific nature of the PM1 particles.The quantitative model for PM1-associated Pb entry into leaf tissue indicated that foliar Pb accumulation was primarily driven by particle adhesion,followed by hydrophilic pene-tration and trans-stomatal liquid film migration,accounting for 87%–89%of the total accumulation.The strong hygroscopicity and high Pb activity of PM1 emitted from waste incineration(WI)increased the Pb absorption coefficient via the hydrophilic and liquid film migration pathway.In contrast,the high hydrophobicity of PM1 from coal burning(CB)led to greater retention of Pb on leaf surfaces.Both foliar reactive oxygen metabolism and photosynthesis indices were sensitive to air pollution.Foliar metal(loid)accumulation and airborne PM1 concentration accounted for the variance in physiological responses in rice leaves.Our results also indicated that Pb was the key element in PM1 emissions from both coal burning(CB)and waste incineration(WI)responsible for significant physiological changes in rice leaves.
基金Funded by the Ministry of Health and Science and Technology (WKJ2007‐2‐006), China
文摘Objective To study correlations of polychlorinated biphenyls (PCBs), DIOXIN, and polybrominated diphenyl ethers (PBDE) with thyroid stimulating hormone(TSH) in children, and assess the impact on children's health. Methods Three hundred and sixty nine children aged from 6 to 8, including 195 from Luqiao, the computer E‐waste recycling area, and 174 from Longyou, the control area, were selected for this investigation to elucidate the correlation of PCBs, DIOXIN, and PBDE with TSH in children’s blood samples. The children had a physical examination and their blood levels of PCBs, DIOXIN, PBDE, and TSH were detected after sample collection. Results In the E‐waste recycling area, the contents of PCBs, PBDE, DIOXIN, and TSH in the blood samples of children were 484.00±84.86 ng·g ‐1 lipid weight, 664.28±262.38 ng·g ‐1 lipid weight, 26.00±19.58 ng·g ‐1 lipid weight and 1.88±0.42 μIU/mL (serum) respectively, while in the control area, the PCBs, PBDE, DIOXIN, and TSH contents were 255.38±95 ng·g ‐1 lipid weight, 375.81±262.43 ng·g ‐1 lipid weight, 39.64±31.86 ng·g ‐1 lipid weight, and 3.31±1.04 μIU/mL respectively. Conclusion The health status of children in the control area are better than that in the contaminated area. Among children who are exposed to persistent organic pollutants, the pollutant content increases significantly in their serum, and the distribution of TSH levels in their bodies are also affected.
基金support from the National Natural Science Foundation of China (22108307)。
文摘The direct emission of waste refinery gas after combustion will cause a severe greenhouse effect.Recovering high-value-added ethylene from wasted refinery gas has fundamental economic and environmental significance. Due to the complexity of the composition of refinery waste gas, designing and optimizing the whole recovery process is still a challenging task. Herein, a novel process(SCOAS) was proposed to obtain polymer-grade ethylene from wasted refinery gas through a direct separation process,and heat pump-assisted thermal integration optimization(HPSCOAS) was carried out. The unique feature of the novel approach is that a new stripper and ethylene reabsorber follow the dry gas absorber to ensure ethylene recovery and methane content. An industrial model, shallow cooling oil absorption(SCOA), and concentration combined cold separation system of ethylene unit using wasted refinery gas was established to analyze the technology and environment. Based on the detailed process modeling and simulation results, the quantitative sustainability assessment of economy and environment based on product life cycle process is carried out. The results show that compared with the traditional process when the same product is obtained, the total annual cost of the HPSCOAS process is the lowest, which is 15.4% lower than that of the SCOA process and 6.1% lower than that of the SCOAS process. In addition,compared with the SCOA process and the HPSCOAS process, the SCOAS process has more environmental advantages. The non-renewable energy consumed by SCOAS is reduced by about 24.8% and 6.1%, respectively. The CO_(2) equivalent is reduced by about 38.6% and 23.7%.
文摘A hydrogen liquefaction concept with an innovative configuration and a capacity of 4 kg·s^(-1)(345.6 t·d^(-1))is developed.The concept involves an ammonia absorption refrigeration system for the pre-cooling of hydrogen and MR streams from 25℃ to-30℃.The ammonia absorption refrigeration system is fed by exhaust gases of the Pa rand gas power plant that are normally dissipated to the environment with a temperature of 546℃.The simulation is performed by Aspen HYSYS V9.0,using two separate equations of state for simulating hydrogen and MR streams to gain more accurate results especially for ortho-para conversion.Results show that conversion enthalpy estimated by Aspen HYSYS,fits very well to the experimental data.Determining the important independent variables and composition of MRs are done using trial and error procedure,a functional and straightforward method for complicated systems.The minimum temperature limit in the cooling section is lowered,and an ortho-para converter is implemented in this section.The proposed concept performs well from energy aspects and leads to COP and SEC equal to 0.271 and 4.54 kW·h·kg^(-1),respectively.The main advantage of this study is in the low SEC,eliminating the losses of the distribution network,and improving the ability of the hydrogen liquefaction for energy storage in off-peak times.
文摘In this study,the feasibility of producing eco-friendly bricks by using geopolymer technology and a waste grinding wheel(WGW)from the grinding wheel industries was investigated.Nowadays,in order to meet industrial needs,for instance,in Taiwan,approximately 500,000 grinding wheels are used annually.That is,a large number of“waste”grinding wheels are produced.Furthermore,few studies have been conducted on the use of WGWs as raw materials in geopolymer applications.The use of geopolymer technology to form bricks can avoid the utilization of clay and cement and even prevent the use of a high-temperature process in kilns.Moreover,it can decrease CO_(2) emission and energy consumption and thus,protect the environment.In this study,the following three major factors were considered:press-forming pressure(70 and 100 kgf/cm2),NaOH molar concentration(2 and 4M),and the ratio of binder fineaggregate(1:3,1:4,and 1:5).Under these conditions,the specimens were tested using the compressive strength test,water absorption test,microstructure analysis,a freezing–thawing test and toxicity characteristic leaching procedure test.The optimal formulation was composed of 1:4 binder fine-aggregate ratio,4M NaOH concentration,and 100-kgf/cm2 pressure.Furthermore,we used a WGW and achieved a compressive strength of 50.6 MPa after 28 days,which was greater than 32 MPa and conformed to the Grade A brick standard of National Standards of the Republic of China(13295).In conclusion,this brick fabrication method based on geopolymer technology was not only beneficial to the environment but also improved the efficiency of reutilizing WGW.
文摘An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced soil washing (SESW) process. The main goal of this study was to characterize the contaminated soil in terms of TPHs, BTEX, PAHs, and metals contents as well as microbiologically (total heterotrophs and specific degrading microorganisms). We also aimed to determine the surfactant type and concentration to be used in the SESW process for the automotive waste oil contaminated soil. At the end, sixteen kg of contaminated soil were washed and the produced wastewater (approximately 40 L) was characterized in terms of COD, BOD;solids, and other physico-chemical parameters. The soil contained about 14,000 mg of TPH/kg soil (heavy fraction), 0.13 mg/kg of benzo (k) fluoranthene and 0.07 mg/kg of benzo (a) pyrene as well as traces of some metals. Metals concentrations were always under the maximum concentration levels suggested by Mexican regulations. 15 different surfactants were used to identify the one with the capability to achieve the highest TPH removal. Surfactants included 5 anionics, 2 zwitterionic, 5 nonionics and 3 natural gums. Sulfopon 30 at a concentration of 0.5% offered the best surfactant performance. The TPH removals employing the different surfactants were in the range from 38% to 68%, in comparison to the soil washing with water (10% of TPH removal). Once the surfactant was selected, 70 kg of soil were washed and the resulting water contained approximately 1300 mg/L of COD, 385 mg/L of BOD (BOD/COD = 0.29), 122 mg/L of MBAS, and 212 mg/L of oil and greases, among other contaminants.
文摘Wasting has been observed as a common feature of the human immunodeficiency virus (HIV) disease since the first reports and its presence increases the risk of death. There is no consensus on how to manage wasting associated with HIV. The goal of this study was to assess the effectiveness of a locally made Chickpea Sesame Based RUTF (CS-RUTF) in treating wasting associated with HIV in developing countries. Chronically sick adults from Mangochi Health District (Malawi) with wasting and confirmed or presumptive clinical diagnosis of HIV were recruited for the study. Subjects received a daily ration of 500 grams of CS-RUTF for 3 to 5 months. Nutrition status changes and mortality were used to assess the effectiveness of the intervention. There were 3 patterns of anthropometric responses continuous weight gain (WG), static weight (SW) and continuation weight loss (WL). The distribution of the 3 patterns is 53.9% (82/154) for the WG pattern, 9.1% (14/154) for the SW pattern and 37.0% (57/154) for the WL pattern. For the WG pattern, the overall median weight gain was 4.6 (2.4 to 7.1) kg. It was 5.7 (3.5 to 7.8) kg for those who completed 3 months of sup-plementation. MUAC and BMI changes followed similar pattern than weight change. Not being on HAART, acute diarrhoea during follow up, episode of reduced appetite during follow up, missing at least one visit were identified as risk factors for intervention failure. Overall, 38.5% (72/187) of study participants died during the intervention. In conclusion, despite that the study confirms the limited impact of food based interventions on mortality among wasted HIV positive individuals, it also suggests that supplementation with CS-RUTF may be an effective intervention for reversing wasting associated with HIV if combined with HAART and specific treatment of severe opportunistic infection causing diarrhoea and reducing appetite.
文摘In the global environment of pursuing resource regeneration and green environmental protection, more and more wasted clothing need to be solved. In order to make full use of the wasted clothing and save land and soil resources, an idea of wasted clothing's recycling and remanufacturing is put forward. In the new idea a pricing game model is established basing on Stacklberg differential game theory between traditional and remanufactured clothing. In this model, the differences in consumers' willingness to pay and the government's subsidies are considered. Government's optimal subsidy are obtained which ensure not only the interests of manufacturers but also environmental reputation and maximum social benefits. The study is helpful to push the wasted clothing's recycling and remanufacturing plan. It makes some index more precise quantification as government's subsidy, manufacturers and the social benefits. Government and manufactures can make the detailed cooperation plan reference to it.
基金Supported by the project of National Science Council in Taiwan(No.:NSC-95-2622-E-159)
文摘The collected tungsten carbide/cobalt scrapped waste typically contains approximately 90% tungsten carbide and 10% cobalt.A nitric method is used to extract tungsten and cobalt from tungsten-containing waste.The waste is first dissolved in nitric acid,which then makes cobalt soluble and becomes cobalt nitrate solution.The waste also oxidizes tungsten carbide to insoluble tungstenic acid precipitate.If tungsten carbide scraps are obtained from leftover of LCD glass cutting,after applying the same process as above,the remaining glass also needs to be separated from the tungstenic acid.XRF analysis shows that 93.8% of cobalt and 97.72% of tungsten can be obtained separately by this wet chemical method.By ICP analysis,no more tungsten ion remains after 2 h reaction in the cobalt recovery when 12 N of nitric acid is used for oxidation.The recovery materials obtained for tungsten are tungsten oxide and for cobalt a mixture of Co3O4 and CoO.
文摘Electronic scrap, especially wasted printed circuit boards (PCBs), is regarded as an environmental challenge. At present, the physical separation is thought to be the environmental friendly and economical method of treating and reutilizing electronic waste. An effective liberation of metals from non metallic components is a crucial step towards mechanical separation and recycling of wasted PCBs. In this paper, the selective shredding theory and mechanics characteristics of wasted PCBs were analyzed, and the shredded experiments of wasted PCBs by hammer mill were investigated. The result shows that the selective shredding exists in the wasted PCBs shredded process by hammer mill. The shredding velocity of non metallic components is far greater than that of metals in the wasted PCBs shredding, which makes the metals concentrate in the coarser fraction. And the impact force of hammer mill is superior to metal liberation from non metallic components, a satisfied metal liberation degree can be achieved in the wasted PCBs shredding by hammer mill.
文摘The life of electronic equipment is becoming increasingly shorter and its replacement always generates a quantity of waste increase, giving rise to a problem of environmental character and still needed new options of solid waste management that will contribute to global sustainable development. Parts of these waste are TCI (the card's printed circuit) which containing dangerous elements and turns them into a polluting material from the soil, water and air, being harmful to human health if there is to proper and responsible way, so the recycling of TCI to obtain precious metals is an example of industrial materials that can be recycled. Despite this, large quantities of these are not recycled and some others are not considered. The objective of this work is to present a systematic and ecological methodology for the recovery of valuable materials contained in parts of used in computers, circuit boards using a leaching process. The method determines a set of variables to evaluate the kinetics of the reaction and the leaching of metals that form the substrate of metal and to establish the parameters that affect the rate of leaching of metals through a sensitivity analysis, to identify design alternatives. It determines the quantity and percentages that constitutes the motherboard, processor, video cards, accelerator graphics, network and memory cards RAM, among others and its content of metals such as Cu, Fe, Ag, Au and Pt.
文摘The Kingdom of Saudi Arabia produces over one million metric tons annually, which returns a 20% of wasted dates annually. Lactic acid and its derivatives are widely used in food, pharmaceutical and textile industries. There has been an increase in lactic acid production because it is used as a raw material to produce polylactic acid, a polymer that is used as a special medical and environmental friendly biodegradable plastic. This study aimed to use wasted dates to produce lactic acid by single culture Lactobacillus casei (ATCC 393), Lactobacillus acidophilus (CICC 6088) and the mixed culture using batch fermentation. The investigation results showed that the maximum concentration of lactic acid for ATCC 393, CICC 6088 and the mixed culture are 87, 84 and 84 g/l respectively. For single CICC 6088 and the mixed culture, the total percentage of glucose and fructose utilized was found to be 100%;76%, respectively, whereas in the case of the single culture ATCC 393, the total percentage of glucose and fructose were 100% and 72%, respectively. With regard to lactic acid concentration, and sugar consumption, the results revealed that the single culture ATCC 393 produced the optimum lactic acid of 87 g/l for 48 hr with initial sugar concentration of 90 g/l.
文摘In this work the radiological dose and risks resulting from recycling of radioactive contaminated NORM scrap metal that produced from one of oil and gas production companies in Egypt, were determined by using RESRAD-RECYCLE computer code. Two scenarios were used: the first was the workers’ scenario, while the second was end-use product scenario. Workers’ scenario was used in this study for evaluating the dose and risk to workers who process recycled materials. This scenario focused on the transport of radioactive NORM scrap metal from the place of origin to the smelter (scrap delivery step). Scenarios for six different workers were included under the scrap delivery step: two workers scrap cutter, two workers scrap loader, and two workers scrap truck driver. The values for each scenario were specified on the basis of processing 200 tons of NORM scrap metal. Because these operations occur before melting of the metal, mass and radionuclide partitioning factors were not applied in the scrap metal delivery step. The radionuclide concentration of the NORM scrap metal was used directly in the dose calculation. The maximum doses received from direct external exposure to all radio nuclides during cutter/sorter, scrap truck driver and unloading of scrap metals were 2.14E-04, 1.4E-06 and 1.86E-05 (mSv) respectively. The excess cancer risks for all radio nuclides during cutter/sorter of scrap metals reached 1.25E-07. Radiation exposures incurred by the scrap unloaders and scrap cutters/sorters were greater than those incurred by the other workers for their closer exposure distances and longer time.