BACKGROUND Emphysematous pyelonephritis(EPN)is a life-threatening necrotizing renal parenchyma infection characterized by gas formation due to severe bacterial infection,predominantly affecting diabetic and immunocomp...BACKGROUND Emphysematous pyelonephritis(EPN)is a life-threatening necrotizing renal parenchyma infection characterized by gas formation due to severe bacterial infection,predominantly affecting diabetic and immunocompromised patients.It carries high morbidity and mortality,requiring early diagnosis and timely intervention.Various prognostic scoring systems help in triaging critically ill patients.The National Early Warning Score 2(NEWS 2)scoring system is a widely used physiological assessment tool that evaluates clinical deterioration based on vital parameters,but its standard form lacks specificity for risk stratification in EPN,necessitating modifications to improve treatment decisionmaking and prognostic accuracy in this critical condition.AIM To highlight the need to modify the NEWS 2 score to enable more intense monitoring and better treatment outcomes.METHODS This prospective study was done on all EPN patients admitted to our hospital over the past 12 years.A weighted average risk-stratification index was calculated for each of the three groups,mortality risk was calculated for each of the NEWS 2 scores,and the need for intervention for each of the three groups was calculated.The NEWS 2 score was subsequently modified with 0-6,7-14 and 15-20 scores included in groups 1,2 and 3,respectively.RESULTS A total of 171 patients with EPN were included in the study,with a predominant association with diabetes(90.6%)and a female-to-male ratio of 1.5:1.The combined prognostic scoring of the three groups was 10.7,13.0,and 21.9,respectively(P<0.01).All patients managed conservatively belonged to group 1(P<0.01).Eight patients underwent early nephrectomy,with six from group 3(P<0.01).Overall mortality was 8(4.7%),with seven from group 3(87.5%).The cutoff NEWS 2 score for mortality was identified to be 15,with a sensitivity of 87.5%,specificity of 96.9%,and an overall accuracy rate of 96.5%.The area under the curve to predict mortality based on the NEWS 2 score was 0.98,with a confidence interval of(0.97,1.0)and P<0.001.CONCLUSION Modified NEWS 2(mNEWS 2)score dramatically aids in the appropriate assessment of treatment-related outcomes.MNEWS 2 scores should become the practice standard to reduce the morbidity and mortality associated with this dreaded illness.展开更多
With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare re...With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare resources.Within this context,laboratory data,as a key component of healthcare information systems,urgently requires efficient sharing and intelligent analysis.This paper designs and constructs an intelligent early warning system for laboratory data based on a cloud platform tailored to the medical consortium model.Through standardized data formats and unified access interfaces,the system enables the integration and cleaning of laboratory data across multiple healthcare institutions.By combining medical rule sets with machine learning models,the system achieves graded alerts and rapid responses to abnormal key indicators and potential outbreaks of infectious diseases.Practical deployment results demonstrate that the system significantly improves the utilization efficiency of laboratory data,strengthens public health event monitoring,and optimizes inter-institutional collaboration.The paper also discusses challenges encountered during system implementation,such as inconsistent data standards,security and compliance concerns,and model interpretability,and proposes corresponding optimization strategies.These findings provide a reference for the broader application of intelligent medical early warning systems.展开更多
An effective warning system for flash floods along the upper River des Peres, a small urban stream in eastern Missouri, USA, is based on three enterprise-level, automated rain gauges.Because floods in this 25 km~2 bas...An effective warning system for flash floods along the upper River des Peres, a small urban stream in eastern Missouri, USA, is based on three enterprise-level, automated rain gauges.Because floods in this 25 km~2 basin develop rapidly and are commonly caused by small but intense thunderstorm cells, these rain gauges were necessarily deployed within the watershed, and immediate telemetry and processing of rainfall delivered in 5-minute intervals is required. Available data show that damaging floods in this area occur only 30 min to 3 h following the delivery of 38 mm of rainfall or more in a single hour. Water levels along this stream can rise more than 3 m/h. Since full deployment in Nov. 2021, our system has successfully predicted 3 significant floods with one false positive.展开更多
The earthquake early warning system is an effective means of disaster reduction to reduce losses caused by earthquakes,it can release earthquake warning information to the public before destructive seismic waves reach...The earthquake early warning system is an effective means of disaster reduction to reduce losses caused by earthquakes,it can release earthquake warning information to the public before destructive seismic waves reach the warning target area,and carry out automatic disposal of lifeline engineering facilities.Through the construction of the National Earthquake Intensity Rapid Reporting and Early Warning Project,an earthquake early warning network consisting of over 1900 monitoring stations has been established in the Beijing-Tianjin-Hebei Urban Agglomeration.The early warning system has achieved second level earthquake warning and minute level intensity rapid reporting.The implementation of these functions relies on the system's ability to timely,accurately,and reliably identify seismic waves.But with the development of social economy,the background noise of earthquake observation environment is becoming increasingly complex,which brings certain challenges to earthquake wave recognition,some interference events have the risk of triggering the earthquake warning system incorrectly.Therefore,this article focuses on seismic wave recognition in complex noise environments and proposes a seismic wave detection method based on triangulation to enhance the antiinterference ability and recognition accuracy of early warning systems.展开更多
Leveraging the achievements of the smart meteorological system nationwide,a meteorological monitoring and early warning system for alfalfa pests and diseases can be formed through the establishment of four systems,nam...Leveraging the achievements of the smart meteorological system nationwide,a meteorological monitoring and early warning system for alfalfa pests and diseases can be formed through the establishment of four systems,namely,"real-time monitoring system,forecasting and prediction system,monitoring and early warning system,and smart service system".It will enable intelligent,dynamic meteorological monitoring,early warning,and forecasting services for the occurrence and development of alfalfa pests and diseases,providing technical support for scientifically controlling their harm and improving yield and quality.展开更多
This paper proposes a street light warning system based on Internet of Things(IoT)technology,which uses cameras to detect moving targets such as vehicles and pedestrians around the system and adjust the brightness of ...This paper proposes a street light warning system based on Internet of Things(IoT)technology,which uses cameras to detect moving targets such as vehicles and pedestrians around the system and adjust the brightness of street lights according to road conditions to reduce unnecessary power waste.The system has a mature self-fault detection mechanism and is equipped with a wireless communication device for data exchange and timely communication with the host computer terminal.The intelligent street lamp system in this paper can be used to reduce the occurrence of pedestrian and vehicle accidents at intersections,and at the same time reduce the consumption of manpower and material resources for street lamp troubleshooting,to achieve energy conservation and emission reduction.展开更多
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in vari...A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.展开更多
Earthquake has a significant impact on operation safety of the high speed railway,and for Jakarta-Bandung High Speed Railway(HSR)in Indonesia where it is earthquake-prone,it is necessary to establish an earthquake ear...Earthquake has a significant impact on operation safety of the high speed railway,and for Jakarta-Bandung High Speed Railway(HSR)in Indonesia where it is earthquake-prone,it is necessary to establish an earthquake early warning system to strengthen its earthquake resistance.Based on the principle and technical characteristics of China's high speed railway earthquake early warning system and combining the actual situations of Jakarta-Bandung HSR in Indonesia,this paper describes how to implement China's high speed railway earthquake early warning system in Jakarta-Bandung HSR.It focuses on optimizations in environmental adaptation design and seismic network interface design,earthquake attenuation model parameter adjustment and terminal software interface adjustment,so as to make the system better suit the local situations,and meet operation requirements and guarantee safe operation of Jakarta-Bandung HSR.展开更多
At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected populat...At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected population are evacuated.More precise warning should use direct monitoring.There are many debris flow monitoring stations but no real time warning system in use.The main reason is that the identification and confirmation of debris flow occurrence requires human interaction and it is too slow.A debris flow monitoring and warning system has been installed in the midstream section of Yusui Stream,Taiwan China.The monitoring station operates fully automatically,providing early warnings without the need for manual intervention.The system comprises two webcam cameras,two Micro-Electro-Mechanical Systems(MEMS),and a rain gauge.The arrival of debris flows is detected and confirmed through both webcam images and MEMS signals.Once debris flow is detected,the system automatically issues a warning to the affected areas via voice messages,line messages,broadcasts,and web-based alerts.The webcam cameras are also used to estimate debris flow velocity and flow height,while the MEMS sensors are utilized to determine the phase speed and flow rate.On July 24th,2014,Typhoon Gaemi triggered several debris flows,and the system successfully issued several warnings automatically.The entire video record,along with depth variation data,was recorded automatically.展开更多
The strata deformation in mining area was monitored in Dabaoshan copper-iron mine,and an analytical method of strata energy release was put forward.On the basis of chaotic theory,by reconstructing the phase space for ...The strata deformation in mining area was monitored in Dabaoshan copper-iron mine,and an analytical method of strata energy release was put forward.On the basis of chaotic theory,by reconstructing the phase space for time series data of strata energy release,the saturated embedding dimension and the correlation dimension of the dynamic system were obtained to be 4 and 1.212 8,respectively,and the evolution laws of distances between phase points of strata energy release in the phase space were revealed.With grey theory,a prediction model of strata energy release was set up,the maximum error of which was less than 6.7%.The results show that there are chaotic characters in strata energy release during mining;after reconstructing phase space,the subtle changing characteristics of energy release can be magnified,and the internal rules can be fully demonstrated.According to the laws,a warning system for strata stability in mining area was established to provide a technical safeguard for safe mining.展开更多
The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological securit...The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.展开更多
[Objective]The paper was to quickly get the real-time dynamic status of regional farmland environmental pollution caused by livestock wastes.[Method] With WebGIS as spatial information platform,the network and digital...[Objective]The paper was to quickly get the real-time dynamic status of regional farmland environmental pollution caused by livestock wastes.[Method] With WebGIS as spatial information platform,the network and digital early warning system of farmland environmental pollution caused by livestock wastes was established.[Result] The system realized the functions such as livestock wastes calculation,livestock information query and analysis,nitrogen load quantity estimation of livestock waste,early warning of farmland environmental pollution caused by livestock wastes and visual display of result.[Conclusion] The paper provided scientific basis for the relevant research on farmland environmental pollution caused by livestock wastes.展开更多
Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for la...Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.展开更多
ln order to explore the design and construction of cucumber powdery mildew warning system in solar greenhouse, internet of things technology was used to conduct the real-time dynamic monitoring of the incidence of cuc...ln order to explore the design and construction of cucumber powdery mildew warning system in solar greenhouse, internet of things technology was used to conduct the real-time dynamic monitoring of the incidence of cucumber powdery mildew and cucumber growth environment in solar greenhouse. The growth environ-ment included temperature and humidity of air and soil. Logistic regression model was used to construct cucumber powdery mildew warning model. The results showed that humidity characteristic variable (maximum air humidity) and temperature characteristic variable (maximum air temperature) had significant effects on the inci-dence probability of cucumber powdery mildew in solar greenhouse. And it was fea-sible to construct cucumber powdery mildew warning system in solar greenhouse with internet of things.展开更多
Hong Kong has a long history of applying masonry retaining walls to provide horizontal platforms and stabilize man-made slopes.Due to the sub-tropical climate,some masonry retaining walls are colonized by trees.Extrem...Hong Kong has a long history of applying masonry retaining walls to provide horizontal platforms and stabilize man-made slopes.Due to the sub-tropical climate,some masonry retaining walls are colonized by trees.Extreme weather,such as typhoons and heavy rains,may cause rupture or root failure of those trees,thus resulting in instability of the retaining walls.A monitoring and warning system for the movement of masonry retaining walls and sway of trees has been designed with the application of fiber Bragg grating(FBG)sensing technology.The monitoring system is also equipped with a solar power system and 4G data transmission devices.The key functions of the proposed monitoring system include remote sensing and data access,early warning,and real-time data visualization.The setups and working principles of the monitoring systems and related transducers are introduced.The feasibility,accuracy,serviceability and reliability of this monitoring system have been checked by in-site calibration tests and four-month monitoring.Besides,a two-level interface has been developed for data visualization.The monitoring results show that the monitored masonry retaining wall had a reversible movement up to 2.5 mm during the monitoring period.Besides,it is found that the locations of the maximum strain on trees depend on the crown spread of trees.展开更多
In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also c...In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also considered as a frontline approach to alleviate hazards. Currently, the key issues are the imbalance between the limited lifespan of equipment, the relatively long period between the recurrences of such hazards, and the wide range of critical rainfall that trigger these disasters. This paper attempts to provide a stepwise multi-parameter debris flow warning system after taking into account the shortcomings observed in other warning systems. The whole system is divided into five stages. Differentwarning levels can be issued based on the critical rainfall thresholds. Monitoring starts when early warning is issued and it continues with debris flow near warning, triggering warning, movement warning and hazard warning stages. For early warning, historical archives of earthquake and drought are used to choose a debris flow-susceptible site for further monitoring. Secondly, weather forecasts provide an alert of possible near warning. Hazardous precipitation, model calculation and debris flow initiation tests, pore pressure sensors and water content sensors are combined to check the critical rainfall and to publically announce a triggering warning. In the final two stages, equipment such as rainfall gauges, flow stage sensors, vibration sensors, low sound sensors and infrasound meters are used to assess movement processes and issue hazardwarnings. In addition to these warnings, communitybased knowledge and information is also obtained and discussed in detail. The proposed stepwise, multiparameter debris flow monitoring and warning system has been applied in Aizi valley China which continuously monitors the debris flow activities.展开更多
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and...A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.展开更多
Based on technologies of GRADS, Delphi, WEB and an SQLServer, distri- bution system for major meteorological disasters early warning information in Hunan Province was established. The system consists of warning tips, ...Based on technologies of GRADS, Delphi, WEB and an SQLServer, distri- bution system for major meteorological disasters early warning information in Hunan Province was established. The system consists of warning tips, early warning for different media and early warning query statistics and the network terminal of the system platform includes a business database server, a message platform database server, a sending server and a receiving terminal. The system enjoys some func- tions, such as examination by different users, on-time updating and effectiveness of flood prevention, construction of excessive warning channel, construction of compre-hensive warning information platform and further improvement of information distribution. The system provides references for prevention and reduction of important me- teorological disasters in Hunan.展开更多
In the central Nepal Himalaya,landslides form the major natural hazards annually resulting in many casualties and damage.Structural as well as non-structural measures are in place to minimize the risk of landslide haz...In the central Nepal Himalaya,landslides form the major natural hazards annually resulting in many casualties and damage.Structural as well as non-structural measures are in place to minimize the risk of landslide hazard.To reduce the landslide risk,a Landslide Early Warning System(LEWS)as a nonstructural measure has been piloted at Sundrawati village(Kalinchowk rural municipality,Dolakha district)to identify its effectiveness.Intensive discussions with stakeholders,aided by landslide susceptibility map,resulted in a better understanding of surface dynamics and the relationship between rainfall and surface movement.This led to the development of a LEWS comprised of extensometers,soil moisture sensors,rain gauge stations,and solar panels as an energy source that blows siren receiving signals via a micro-controller and interfacing circuit.The data generated through the system is transmitted via a Global System for Mobile Communications(GSM)network to responsible organizations in realtime to circulate the warning to local residents.This LEWS is user-friendly and can be easily operated by a community.The successful pilot early warning system has saved 495 people from 117 households in August 2018.However,landslide monitoring and dissemination of warning information remains a complex process where technical and communications skill should work closely together.展开更多
Flash floods are deemed the most fatal and disastrous natural hazards globally due to their prompt onset that requires a short prime time for emergency response.Cognitive Internet of things(CIoT)technologies including...Flash floods are deemed the most fatal and disastrous natural hazards globally due to their prompt onset that requires a short prime time for emergency response.Cognitive Internet of things(CIoT)technologies including inherent characteristics of cognitive radio(CR)are potential candidates to develop a monitoring and early warning system(MEWS)that helps in efficiently utilizing the short response time to save lives during flash floods.However,most CIoT devices are battery-limited and thus,it reduces the lifetime of the MEWS.To tackle these problems,we propose a CIoTbased MEWS to slash the fatalities of flash floods.To extend the lifetime of the MEWS by conserving the limited battery energy of CIoT sensors,we formulate a resource assignment problem for maximizing energy efficiency.To solve the problem,at first,we devise a polynomial-time heuristic energyefficient scheduler(EES-1).However,its performance can be unsatisfactory since it requires an exhaustive search to find local optimum values without consideration of the overall network energy efficiency.To enhance the energy efficiency of the proposed EES-1 scheme,we additionally formulate an optimization problem based on a maximum weight matching bipartite graph.Then,we additionally propose a Hungarian algorithm-based energy-efficient scheduler(EES-2),solvable in polynomial time.The simulation results show that the proposed EES-2 scheme achieves considerably high energy efficiency in the CIoT-based MEWS,leading to the extended lifetime of the MEWS without loss of throughput performance.展开更多
文摘BACKGROUND Emphysematous pyelonephritis(EPN)is a life-threatening necrotizing renal parenchyma infection characterized by gas formation due to severe bacterial infection,predominantly affecting diabetic and immunocompromised patients.It carries high morbidity and mortality,requiring early diagnosis and timely intervention.Various prognostic scoring systems help in triaging critically ill patients.The National Early Warning Score 2(NEWS 2)scoring system is a widely used physiological assessment tool that evaluates clinical deterioration based on vital parameters,but its standard form lacks specificity for risk stratification in EPN,necessitating modifications to improve treatment decisionmaking and prognostic accuracy in this critical condition.AIM To highlight the need to modify the NEWS 2 score to enable more intense monitoring and better treatment outcomes.METHODS This prospective study was done on all EPN patients admitted to our hospital over the past 12 years.A weighted average risk-stratification index was calculated for each of the three groups,mortality risk was calculated for each of the NEWS 2 scores,and the need for intervention for each of the three groups was calculated.The NEWS 2 score was subsequently modified with 0-6,7-14 and 15-20 scores included in groups 1,2 and 3,respectively.RESULTS A total of 171 patients with EPN were included in the study,with a predominant association with diabetes(90.6%)and a female-to-male ratio of 1.5:1.The combined prognostic scoring of the three groups was 10.7,13.0,and 21.9,respectively(P<0.01).All patients managed conservatively belonged to group 1(P<0.01).Eight patients underwent early nephrectomy,with six from group 3(P<0.01).Overall mortality was 8(4.7%),with seven from group 3(87.5%).The cutoff NEWS 2 score for mortality was identified to be 15,with a sensitivity of 87.5%,specificity of 96.9%,and an overall accuracy rate of 96.5%.The area under the curve to predict mortality based on the NEWS 2 score was 0.98,with a confidence interval of(0.97,1.0)and P<0.001.CONCLUSION Modified NEWS 2(mNEWS 2)score dramatically aids in the appropriate assessment of treatment-related outcomes.MNEWS 2 scores should become the practice standard to reduce the morbidity and mortality associated with this dreaded illness.
文摘With the continuous advancement of the tiered diagnosis and treatment system,the medical consortium model has gained increasing attention as an important approach to promoting the vertical integration of healthcare resources.Within this context,laboratory data,as a key component of healthcare information systems,urgently requires efficient sharing and intelligent analysis.This paper designs and constructs an intelligent early warning system for laboratory data based on a cloud platform tailored to the medical consortium model.Through standardized data formats and unified access interfaces,the system enables the integration and cleaning of laboratory data across multiple healthcare institutions.By combining medical rule sets with machine learning models,the system achieves graded alerts and rapid responses to abnormal key indicators and potential outbreaks of infectious diseases.Practical deployment results demonstrate that the system significantly improves the utilization efficiency of laboratory data,strengthens public health event monitoring,and optimizes inter-institutional collaboration.The paper also discusses challenges encountered during system implementation,such as inconsistent data standards,security and compliance concerns,and model interpretability,and proposes corresponding optimization strategies.These findings provide a reference for the broader application of intelligent medical early warning systems.
文摘An effective warning system for flash floods along the upper River des Peres, a small urban stream in eastern Missouri, USA, is based on three enterprise-level, automated rain gauges.Because floods in this 25 km~2 basin develop rapidly and are commonly caused by small but intense thunderstorm cells, these rain gauges were necessarily deployed within the watershed, and immediate telemetry and processing of rainfall delivered in 5-minute intervals is required. Available data show that damaging floods in this area occur only 30 min to 3 h following the delivery of 38 mm of rainfall or more in a single hour. Water levels along this stream can rise more than 3 m/h. Since full deployment in Nov. 2021, our system has successfully predicted 3 significant floods with one false positive.
基金supported by the Spark Program of Earthquake Science and Technology(No.XH23003C)。
文摘The earthquake early warning system is an effective means of disaster reduction to reduce losses caused by earthquakes,it can release earthquake warning information to the public before destructive seismic waves reach the warning target area,and carry out automatic disposal of lifeline engineering facilities.Through the construction of the National Earthquake Intensity Rapid Reporting and Early Warning Project,an earthquake early warning network consisting of over 1900 monitoring stations has been established in the Beijing-Tianjin-Hebei Urban Agglomeration.The early warning system has achieved second level earthquake warning and minute level intensity rapid reporting.The implementation of these functions relies on the system's ability to timely,accurately,and reliably identify seismic waves.But with the development of social economy,the background noise of earthquake observation environment is becoming increasingly complex,which brings certain challenges to earthquake wave recognition,some interference events have the risk of triggering the earthquake warning system incorrectly.Therefore,this article focuses on seismic wave recognition in complex noise environments and proposes a seismic wave detection method based on triangulation to enhance the antiinterference ability and recognition accuracy of early warning systems.
文摘Leveraging the achievements of the smart meteorological system nationwide,a meteorological monitoring and early warning system for alfalfa pests and diseases can be formed through the establishment of four systems,namely,"real-time monitoring system,forecasting and prediction system,monitoring and early warning system,and smart service system".It will enable intelligent,dynamic meteorological monitoring,early warning,and forecasting services for the occurrence and development of alfalfa pests and diseases,providing technical support for scientifically controlling their harm and improving yield and quality.
文摘This paper proposes a street light warning system based on Internet of Things(IoT)technology,which uses cameras to detect moving targets such as vehicles and pedestrians around the system and adjust the brightness of street lights according to road conditions to reduce unnecessary power waste.The system has a mature self-fault detection mechanism and is equipped with a wireless communication device for data exchange and timely communication with the host computer terminal.The intelligent street lamp system in this paper can be used to reduce the occurrence of pedestrian and vehicle accidents at intersections,and at the same time reduce the consumption of manpower and material resources for street lamp troubleshooting,to achieve energy conservation and emission reduction.
文摘A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.
文摘Earthquake has a significant impact on operation safety of the high speed railway,and for Jakarta-Bandung High Speed Railway(HSR)in Indonesia where it is earthquake-prone,it is necessary to establish an earthquake early warning system to strengthen its earthquake resistance.Based on the principle and technical characteristics of China's high speed railway earthquake early warning system and combining the actual situations of Jakarta-Bandung HSR in Indonesia,this paper describes how to implement China's high speed railway earthquake early warning system in Jakarta-Bandung HSR.It focuses on optimizations in environmental adaptation design and seismic network interface design,earthquake attenuation model parameter adjustment and terminal software interface adjustment,so as to make the system better suit the local situations,and meet operation requirements and guarantee safe operation of Jakarta-Bandung HSR.
基金supported by MOA project 111AS-7.3.4-SB-S3 and 112AS-7.3.4-SB-S3.
文摘At present,debris flow warning uses precipitation threshold and issues regional warning throughout the world.Precipitation threshold warning is less accurate and in most of the time large portion of unaffected population are evacuated.More precise warning should use direct monitoring.There are many debris flow monitoring stations but no real time warning system in use.The main reason is that the identification and confirmation of debris flow occurrence requires human interaction and it is too slow.A debris flow monitoring and warning system has been installed in the midstream section of Yusui Stream,Taiwan China.The monitoring station operates fully automatically,providing early warnings without the need for manual intervention.The system comprises two webcam cameras,two Micro-Electro-Mechanical Systems(MEMS),and a rain gauge.The arrival of debris flows is detected and confirmed through both webcam images and MEMS signals.Once debris flow is detected,the system automatically issues a warning to the affected areas via voice messages,line messages,broadcasts,and web-based alerts.The webcam cameras are also used to estimate debris flow velocity and flow height,while the MEMS sensors are utilized to determine the phase speed and flow rate.On July 24th,2014,Typhoon Gaemi triggered several debris flows,and the system successfully issued several warnings automatically.The entire video record,along with depth variation data,was recorded automatically.
基金Project (2010CB732004) supported by the National Basic Research Program of ChinaProject (51074177) supported by the Joint Funding of National Natural Science Foundation and Shanghai Baosteel Group Corporation,China
文摘The strata deformation in mining area was monitored in Dabaoshan copper-iron mine,and an analytical method of strata energy release was put forward.On the basis of chaotic theory,by reconstructing the phase space for time series data of strata energy release,the saturated embedding dimension and the correlation dimension of the dynamic system were obtained to be 4 and 1.212 8,respectively,and the evolution laws of distances between phase points of strata energy release in the phase space were revealed.With grey theory,a prediction model of strata energy release was set up,the maximum error of which was less than 6.7%.The results show that there are chaotic characters in strata energy release during mining;after reconstructing phase space,the subtle changing characteristics of energy release can be magnified,and the internal rules can be fully demonstrated.According to the laws,a warning system for strata stability in mining area was established to provide a technical safeguard for safe mining.
基金funded by National Natural Science Foundation Project (40801077)Ministry of Education Key Project (209100)+1 种基金Natural Science Foundation of Chongqing ( CSTC, 2008BB7367 )Chongqing Municipal Education Commission of Science and Technology Research Grant Project (KJ070811)~~
文摘The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.
基金Supported by B Category Projects of Fujian Provincial Department ofEducation (JB10132)Technology Start-up Projects of MinjiangUniversity (YKQ09003)~~
文摘[Objective]The paper was to quickly get the real-time dynamic status of regional farmland environmental pollution caused by livestock wastes.[Method] With WebGIS as spatial information platform,the network and digital early warning system of farmland environmental pollution caused by livestock wastes was established.[Result] The system realized the functions such as livestock wastes calculation,livestock information query and analysis,nitrogen load quantity estimation of livestock waste,early warning of farmland environmental pollution caused by livestock wastes and visual display of result.[Conclusion] The paper provided scientific basis for the relevant research on farmland environmental pollution caused by livestock wastes.
基金financially supported by the State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection (Chengdu University of Technology) (Grant No. SKLGP2013Z007)the National Natural Science Foundation of China (Grant No. 41302242)
文摘Landslides not only cause property losses,but also kill and injure large numbers of people every year in the mountainous areas. These losses and casualties may be avoided to some extent by early warning systems for landslides. In this paper, a realtime monitoring network and a computer-aided automatic early warning system(EWS) are presented with details of their design and an example of application in the Longjingwan landslide, Kaiyang County, Guizhou Province. Then, according to principle simple method of landslide prediction, the setting of alarm levels and the design of appropriate counter-measures are presented. A four-level early warning system(Zero, Outlook, Attention and Warning) has been adopted, and the velocity threshold was selected as the main warning threshold for the landslide occurrence, but expert judgment is included in the EWS to avoid false alarms. A case study shows the applicability and reliability for landslide risk management, and recommendations are presented for other similar projects.
基金Supported by the Science and Technology Support Program of Tianjin(15ZCZDNC00120)~~
文摘ln order to explore the design and construction of cucumber powdery mildew warning system in solar greenhouse, internet of things technology was used to conduct the real-time dynamic monitoring of the incidence of cucumber powdery mildew and cucumber growth environment in solar greenhouse. The growth environ-ment included temperature and humidity of air and soil. Logistic regression model was used to construct cucumber powdery mildew warning model. The results showed that humidity characteristic variable (maximum air humidity) and temperature characteristic variable (maximum air temperature) had significant effects on the inci-dence probability of cucumber powdery mildew in solar greenhouse. And it was fea-sible to construct cucumber powdery mildew warning system in solar greenhouse with internet of things.
基金supported by the Development Bureau of Hong Kong SAR Government,a Research Impact Fund(RIF)project(Grant No.R5037-18)a Theme-based Research Scheme Fund(TRS)project(Grant No.T22-502/18-R)a General Research Fund(GRF)projects(Grant No.PolyU 152130/19E)from Research Grants Council(RGC)of Hong Kong SAR.
文摘Hong Kong has a long history of applying masonry retaining walls to provide horizontal platforms and stabilize man-made slopes.Due to the sub-tropical climate,some masonry retaining walls are colonized by trees.Extreme weather,such as typhoons and heavy rains,may cause rupture or root failure of those trees,thus resulting in instability of the retaining walls.A monitoring and warning system for the movement of masonry retaining walls and sway of trees has been designed with the application of fiber Bragg grating(FBG)sensing technology.The monitoring system is also equipped with a solar power system and 4G data transmission devices.The key functions of the proposed monitoring system include remote sensing and data access,early warning,and real-time data visualization.The setups and working principles of the monitoring systems and related transducers are introduced.The feasibility,accuracy,serviceability and reliability of this monitoring system have been checked by in-site calibration tests and four-month monitoring.Besides,a two-level interface has been developed for data visualization.The monitoring results show that the monitored masonry retaining wall had a reversible movement up to 2.5 mm during the monitoring period.Besides,it is found that the locations of the maximum strain on trees depend on the crown spread of trees.
基金supported by the National Natural Science Foundation of China(Grant Nos.41661134012 and 41501012)Foundation for selected young scientists,Institute of Mountain Hazards and Environment,CAS(Grant Nos.SDSQN-1306,Y3L1340340,sds-135-1202-02)
文摘In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also considered as a frontline approach to alleviate hazards. Currently, the key issues are the imbalance between the limited lifespan of equipment, the relatively long period between the recurrences of such hazards, and the wide range of critical rainfall that trigger these disasters. This paper attempts to provide a stepwise multi-parameter debris flow warning system after taking into account the shortcomings observed in other warning systems. The whole system is divided into five stages. Differentwarning levels can be issued based on the critical rainfall thresholds. Monitoring starts when early warning is issued and it continues with debris flow near warning, triggering warning, movement warning and hazard warning stages. For early warning, historical archives of earthquake and drought are used to choose a debris flow-susceptible site for further monitoring. Secondly, weather forecasts provide an alert of possible near warning. Hazardous precipitation, model calculation and debris flow initiation tests, pore pressure sensors and water content sensors are combined to check the critical rainfall and to publically announce a triggering warning. In the final two stages, equipment such as rainfall gauges, flow stage sensors, vibration sensors, low sound sensors and infrasound meters are used to assess movement processes and issue hazardwarnings. In addition to these warnings, communitybased knowledge and information is also obtained and discussed in detail. The proposed stepwise, multiparameter debris flow monitoring and warning system has been applied in Aizi valley China which continuously monitors the debris flow activities.
基金Project(51175159)supported by the National Natural Science Foundation of ChinaProject(2013WK3024)supported by the Science andTechnology Planning Program of Hunan Province,ChinaProject(CX2013B146)supported by the Hunan Provincial InnovationFoundation for Postgraduate,China
文摘A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.
基金Supported by Meteorological Key Technology Integration and Application Program in 2012(CAMGJ2012M34)Meteorological Key Technology Integration and Application Program in 2011(CMAGJ2011Z07)Hunan Key Program~~
文摘Based on technologies of GRADS, Delphi, WEB and an SQLServer, distri- bution system for major meteorological disasters early warning information in Hunan Province was established. The system consists of warning tips, early warning for different media and early warning query statistics and the network terminal of the system platform includes a business database server, a message platform database server, a sending server and a receiving terminal. The system enjoys some func- tions, such as examination by different users, on-time updating and effectiveness of flood prevention, construction of excessive warning channel, construction of compre-hensive warning information platform and further improvement of information distribution. The system provides references for prevention and reduction of important me- teorological disasters in Hunan.
基金Government of NepalMinistry of Forests and Environment (MoFE)/DoFSCFood and Agricultural Organizations of the United Nations (FAO) for overall support to conduct this study
文摘In the central Nepal Himalaya,landslides form the major natural hazards annually resulting in many casualties and damage.Structural as well as non-structural measures are in place to minimize the risk of landslide hazard.To reduce the landslide risk,a Landslide Early Warning System(LEWS)as a nonstructural measure has been piloted at Sundrawati village(Kalinchowk rural municipality,Dolakha district)to identify its effectiveness.Intensive discussions with stakeholders,aided by landslide susceptibility map,resulted in a better understanding of surface dynamics and the relationship between rainfall and surface movement.This led to the development of a LEWS comprised of extensometers,soil moisture sensors,rain gauge stations,and solar panels as an energy source that blows siren receiving signals via a micro-controller and interfacing circuit.The data generated through the system is transmitted via a Global System for Mobile Communications(GSM)network to responsible organizations in realtime to circulate the warning to local residents.This LEWS is user-friendly and can be easily operated by a community.The successful pilot early warning system has saved 495 people from 117 households in August 2018.However,landslide monitoring and dissemination of warning information remains a complex process where technical and communications skill should work closely together.
基金This work was supported in part by the Ministry of Science and ICT(MSIT)Korea,under the Information and Technology Research Center(ITRC)support program(IITP-2021-2018-0-01426)in part by the National Research Foundation of Korea(NRF)funded by the Korea government(MSIT)(No.2019R1F1A1059125).
文摘Flash floods are deemed the most fatal and disastrous natural hazards globally due to their prompt onset that requires a short prime time for emergency response.Cognitive Internet of things(CIoT)technologies including inherent characteristics of cognitive radio(CR)are potential candidates to develop a monitoring and early warning system(MEWS)that helps in efficiently utilizing the short response time to save lives during flash floods.However,most CIoT devices are battery-limited and thus,it reduces the lifetime of the MEWS.To tackle these problems,we propose a CIoTbased MEWS to slash the fatalities of flash floods.To extend the lifetime of the MEWS by conserving the limited battery energy of CIoT sensors,we formulate a resource assignment problem for maximizing energy efficiency.To solve the problem,at first,we devise a polynomial-time heuristic energyefficient scheduler(EES-1).However,its performance can be unsatisfactory since it requires an exhaustive search to find local optimum values without consideration of the overall network energy efficiency.To enhance the energy efficiency of the proposed EES-1 scheme,we additionally formulate an optimization problem based on a maximum weight matching bipartite graph.Then,we additionally propose a Hungarian algorithm-based energy-efficient scheduler(EES-2),solvable in polynomial time.The simulation results show that the proposed EES-2 scheme achieves considerably high energy efficiency in the CIoT-based MEWS,leading to the extended lifetime of the MEWS without loss of throughput performance.